@misc{HesseKlierSgarzietal.2018, author = {Hesse, Julia and Klier, Dennis Tobias and Sgarzi, Massimo and Nsubuga, Anne and Bauer, Christoph and Grenzer, J{\"o}rg and H{\"u}bner, Ren{\´e} and Wislicenus, Marcus and Joshi, Tanmaya and Kumke, Michael Uwe and Stephan, Holger}, title = {Rapid synthesis of sub-10 nm hexagonal NaYF4-based upconverting nanoparticles using Therminol® 66}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {613}, issn = {1866-8372}, doi = {10.25932/publishup-42351}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423515}, pages = {10}, year = {2018}, abstract = {We report a simple one-pot method for the rapid preparation of sub-10nm pure hexagonal (-phase) NaYF4-based upconverting nanoparticles (UCNPs). Using Therminol((R))66 as a co-solvent, monodisperse UCNPs could be obtained in unusually short reaction times. By varying the reaction time and reaction temperature, it was possible to control precisely the particle size and crystalline phase of the UCNPs. The upconversion (UC) luminescence properties of the nanocrystals were tuned by varying the concentrations of the dopants (Nd3+ and Yb3+ sensitizer ions and Er3+ activator ions). The size and phase-purity of the as-synthesized core and core-shell nanocrystals were assessed by using complementary transmission electron microscopy, dynamic light scattering, X-ray diffraction, and small-angle X-ray scattering studies. In-depth photophysical evaluation of the UCNPs was pursued by using steady-state and time-resolved luminescence spectroscopy. An enhancement in the UC intensity was observed if the nanocrystals, doped with optimized concentrations of lanthanide sensitizer/activator ions, were further coated with an inert/active shell. This was attributed to the suppression of surface-related luminescence quenching effects.}, language = {en} } @misc{OlejkoCywińskiBald2016, author = {Olejko, Lydia and Cywiński, P. J. and Bald, Ilko}, title = {An ion-controlled four-color fluorescent telomeric switch on DNA origami structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95831}, pages = {10339 -- 10347}, year = {2016}, abstract = {The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using F{\"o}rster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter.}, language = {en} } @misc{PacholskiAgarwalBalderasValadez2016, author = {Pacholski, Claudia and Agarwal, Vivechana and Balderas-Valadez, Ruth Fabiola}, title = {Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394426}, pages = {21430 -- 21434}, year = {2016}, abstract = {Optical biosensors based on porous silicon were fabricated by metal assisted chemical etching. Thereby double layered porous silicon structures were obtained consisting of porous pillars with large pores on top of a porous silicon layer with smaller pores. These structures showed a similar sensing performance in comparison to electrochemically produced porous silicon interferometric sensors.}, language = {en} }