@phdthesis{Crisologo2019, author = {Crisologo, Irene}, title = {Using spaceborne radar platforms to enhance the homogeneity of weather radar calibration}, doi = {10.25932/publishup-44570}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445704}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 61}, year = {2019}, abstract = {Accurate weather observations are the keystone to many quantitative applications, such as precipitation monitoring and nowcasting, hydrological modelling and forecasting, climate studies, as well as understanding precipitation-driven natural hazards (i.e. floods, landslides, debris flow). Weather radars have been an increasingly popular tool since the 1940s to provide high spatial and temporal resolution precipitation data at the mesoscale, bridging the gap between synoptic and point scale observations. Yet, many institutions still struggle to tap the potential of the large archives of reflectivity, as there is still much to understand about factors that contribute to measurement errors, one of which is calibration. Calibration represents a substantial source of uncertainty in quantitative precipitation estimation (QPE). A miscalibration of a few dBZ can easily deteriorate the accuracy of precipitation estimates by an order of magnitude. Instances where rain cells carrying torrential rains are misidentified by the radar as moderate rain could mean the difference between a timely warning and a devastating flood. Since 2012, the Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA) has been expanding the country's ground radar network. We had a first look into the dataset from one of the longest running radars (the Subic radar) after devastating week-long torrential rains and thunderstorms in August 2012 caused by the annual southwestmonsoon and enhanced by the north-passing Typhoon Haikui. The analysis of the rainfall spatial distribution revealed the added value of radar-based QPE in comparison to interpolated rain gauge observations. However, when compared with local gauge measurements, severe miscalibration of the Subic radar was found. As a consequence, the radar-based QPE would have underestimated the rainfall amount by up to 60\% if they had not been adjusted by rain gauge observations—a technique that is not only affected by other uncertainties, but which is also not feasible in other regions of the country with very sparse rain gauge coverage. Relative calibration techniques, or the assessment of bias from the reflectivity of two radars, has been steadily gaining popularity. Previous studies have demonstrated that reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and its successor, the Global Precipitation Measurement (GPM), are accurate enough to serve as a calibration reference for ground radars over low-to-mid-latitudes (± 35 deg for TRMM; ± 65 deg for GPM). Comparing spaceborne radars (SR) and ground radars (GR) requires cautious consideration of differences in measurement geometry and instrument specifications, as well as temporal coincidence. For this purpose, we implement a 3-D volume matching method developed by Schwaller and Morris (2011) and extended by Warren et al. (2018) to 5 years worth of observations from the Subic radar. In this method, only the volumetric intersections of the SR and GR beams are considered. Calibration bias affects reflectivity observations homogeneously across the entire radar domain. Yet, other sources of systematic measurement errors are highly heterogeneous in space, and can either enhance or balance the bias introduced by miscalibration. In order to account for such heterogeneous errors, and thus isolate the calibration bias, we assign a quality index to each matching SR-GR volume, and thus compute the GR calibration bias as a qualityweighted average of reflectivity differences in any sample of matching SR-GR volumes. We exemplify the idea of quality-weighted averaging by using beam blockage fraction (BBF) as a quality variable. Quality-weighted averaging is able to increase the consistency of SR and GR observations by decreasing the standard deviation of the SR-GR differences, and thus increasing the precision of the bias estimates. To extend this framework further, the SR-GR quality-weighted bias estimation is applied to the neighboring Tagaytay radar, but this time focusing on path-integrated attenuation (PIA) as the source of uncertainty. Tagaytay is a C-band radar operating at a lower wavelength and is therefore more affected by attenuation. Applying the same method used for the Subic radar, a time series of calibration bias is also established for the Tagaytay radar. Tagaytay radar sits at a higher altitude than the Subic radar and is surrounded by a gentler terrain, so beam blockage is negligible, especially in the overlapping region. Conversely, Subic radar is largely affected by beam blockage in the overlapping region, but being an SBand radar, attenuation is considered negligible. This coincidentally independent uncertainty contributions of each radar in the region of overlap provides an ideal environment to experiment with the different scenarios of quality filtering when comparing reflectivities from the two ground radars. The standard deviation of the GR-GR differences already decreases if we consider either BBF or PIA to compute the quality index and thus the weights. However, combining them multiplicatively resulted in the largest decrease in standard deviation, suggesting that taking both factors into account increases the consistency between the matched samples. The overlap between the two radars and the instances of the SR passing over the two radars at the same time allows for verification of the SR-GR quality-weighted bias estimation method. In this regard, the consistency between the two ground radars is analyzed before and after bias correction is applied. For cases when all three radars are coincident during a significant rainfall event, the correction of GR reflectivities with calibration bias estimates from SR overpasses dramatically improves the consistency between the two ground radars which have shown incoherent observations before correction. We also show that for cases where adequate SR coverage is unavailable, interpolating the calibration biases using a moving average can be used to correct the GR observations for any point in time to some extent. By using the interpolated biases to correct GR observations, we demonstrate that bias correction reduces the absolute value of the mean difference in most cases, and therefore improves the consistency between the two ground radars. This thesis demonstrates that in general, taking into account systematic sources of uncertainty that are heterogeneous in space (e.g. BBF) and time (e.g. PIA) allows for a more consistent estimation of calibration bias, a homogeneous quantity. The bias still exhibits an unexpected variability in time, which hints that there are still other sources of errors that remain unexplored. Nevertheless, the increase in consistency between SR and GR as well as between the two ground radars, suggests that considering BBF and PIA in a weighted-averaging approach is a step in the right direction. Despite the ample room for improvement, the approach that combines volume matching between radars (either SR-GR or GR-GR) and quality-weighted comparison is readily available for application or further scrutiny. As a step towards reproducibility and transparency in atmospheric science, the 3D matching procedure and the analysis workflows as well as sample data are made available in public repositories. Open-source software such as Python and wradlib are used for all radar data processing in this thesis. This approach towards open science provides both research institutions and weather services with a valuable tool that can be applied to radar calibration, from monitoring to a posteriori correction of archived data.}, language = {en} } @phdthesis{Jamil2010, author = {Jamil, Abdlhamed}, title = {Fernerkundung und GIS zur Erfassung, Modellierung und Visualisierung orientalischer Stadtstrukturen : das Beispiel Sanaa (Jemen)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50200}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Gegenstand dieser Arbeit ist die Konzeption, Entwicklung und exemplarische Implementierung eines generischen Verfahrens zur Erfassung, Verarbeitung, Auswertung und kartographischen Visualisierung urbaner Strukturen im altweltlichen Trockeng{\"u}rtel mittels hochaufl{\"o}sender operationeller Fernerkundungsdaten. Das Verfahren wird am Beispiel der jemenitischen Hauptstadt Sanaa einer Vertreterin des Typus der Orientalischen Stadt angewandt und evaluiert. Das zu entwickelnde Verfahren soll auf Standardverfahren und Systemen der raumbezogenen Informationsverarbeitung basieren und in seinen wesentlichen Prozessschritten automatisiert werden k{\"o}nnen. Daten von hochaufl{\"o}senden operationellen Fernerkundungssystemen (wie z.B. QuickBird, Ikonos u. a.) erlauben die Erkennung und Kartierung urbaner Objekte, wie Geb{\"a}ude, Straßen und sogar Autos. Die mit ihnen erstellten Karten und den daraus gewonnenen Informationen k{\"o}nnen zur Erfassung von Urbanisierungsprozessen (Stadt- und Bev{\"o}lkerungswachstum) herangezogen werden. Sie werden auch zur Generierung von 3D-Stadtmodellen genutzt. Diese dienen z.B. der Visualisierung f{\"u}r touristische Anwendungen, f{\"u}r die Stadtplanung, f{\"u}r L{\"a}rmanalysen oder f{\"u}r die Standortplanung von Mobilfunkantennen. Bei dem in dieser Arbeit erzeugten 3D-Visualisierung wurden jedoch keine Geb{\"a}udedetails erfasst. Entscheidend war vielmehr die Wiedergabe der Siedlungsstruktur, die im Vorhandensein und in der Anordnung der Geb{\"a}ude liegt. In dieser Arbeit wurden Daten des Satellitensensors Quickbird von 2005 verwendet. Sie zeigen einen Ausschnitt der Stadt Sanaa in Jemen. Die Fernerkundungsdaten wurden durch andere Daten, u.a. auch Gel{\"a}ndedaten, erg{\"a}nzt und verifiziert. Das ausgearbeitete Verfahren besteht aus der Klassifikation der Satellitenbild-aufnahme, die u.a. pixelbezogen und f{\"u}r jede Klasse einzeln (pixelbezogene Klassifikation auf Klassenebene) durchgef{\"u}hrt wurde. Zus{\"a}tzlich fand eine visuelle Interpretation der Satellitenbildaufnahme statt, bei der einzelne Fl{\"a}chen und die Straßen digitalisiert und die Objekte mit Symbolen gekennzeichnet wurden. Die aus beiden Verfahren erstellten Stadtkarten wurden zu einer fusioniert. Durch die Kombination der Ergebnisse werden die Vorteile beider Karten in einer vereint und ihre jeweiligen Schw{\"a}chen beseitigt bzw. minimiert. Die digitale Erfassung der Konturlinien auf der Orthophotomap von Sanaa erlaubte die Erstellung eines Digitalen Gel{\"a}ndemodells, das der dreidimensionalen Darstellung des Altstadtbereichs von Sanaa diente. Die 3D-Visualisierung wurde sowohl von den pixelbezogenen Klassifikationsergebnissen auf Klassenebene als auch von der digitalen Erfassung der Objekte erstellt. Die Ergebnisse beider Visualisierungen wurden im Anschluss in einer Stadtkarte vereint. Bei allen Klassifikationsverfahren wurden die asphaltierten Straßen, die Vegetation und einzeln stehende Geb{\"a}ude sehr gut erfasst. Die Klassifikation der Altstadt gestaltete sich aufgrund der dort f{\"u}r die Klassifikation herrschenden ung{\"u}nstigen Bedingungen am problematischsten. Die insgesamt besten Ergebnisse mit den h{\"o}chsten Genauigkeitswerten wurden bei der pixelbezogenen Klassifikation auf Klassenebene erzielt. Dadurch, dass jede Klasse einzeln klassifiziert wurde, konnte die zu einer Klasse geh{\"o}rende Fl{\"a}che besser erfasst und nachbearbeitet werden. Die Datenmenge wurde reduziert, die Bearbeitungszeit somit k{\"u}rzer und die Speicherkapazit{\"a}t geringer. Die Auswertung bzw. visuelle Validierung der pixel-bezogenen Klassifikationsergebnisse auf Klassenebene mit dem Originalsatelliten-bild gestaltete sich einfacher und erfolgte genauer als bei den anderen durch-gef{\"u}hrten Klassifikationsverfahren. Außerdem war es durch die alleinige Erfassung der Klasse Geb{\"a}ude m{\"o}glich, eine 3D-Visualisierung zu erzeugen. Bei einem Vergleich der erstellten Stadtkarten ergibt sich, dass die durch die visuelle Interpretation erstellte Karte mehr Informationen enth{\"a}lt. Die von den pixelbezogenen Klassifikationsergebnissen auf Klassenebene erstellte Karte ist aber weniger arbeits- und zeitaufwendig zu erzeugen. Zudem arbeitet sie die Struktur einer orientalischen Stadt mit den wesentlichen Merkmalen besser heraus. Durch die auf Basis der 2D-Stadtkarten erstellte 3D-Visualisierung wird ein anderer r{\"a}umlicher Eindruck vermittelt und bestimmte Elemente einer orientalischen Stadt deutlich gemacht. Dazu z{\"a}hlen die sich in der Altstadt befindenden Sackgassen und die ehemalige Stadtmauer. Auch die f{\"u}r Sanaa typischen Hochh{\"a}user werden in der 3D-Visualisierung erkannt. Insgesamt wurde in der Arbeit ein generisches Verfahren entwickelt, dass mit geringen Modifikationen auch auf andere st{\"a}dtische R{\"a}ume des Typus orientalische Stadt angewendet werden kann.}, language = {de} } @book{JordanPietruskaSiemeretal.2017, author = {Jordan, Peter and Pietruska, Franz and Siemer, Julia and Rolfes, Manfred and Borg, Erik and Fichtelmann, Bernd and Jaumann, Ralf and Naß, Andrea and Bamberg, Marlene}, title = {Geoinformation \& Visualisierung}, number = {12}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, organization = {Fachgruppe Geoinformatik des Instituts f{\"u}r Geographie der Universit{\"a}t Potsdam}, isbn = {978-3-86956-389-3}, issn = {2194-1599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100787}, publisher = {Universit{\"a}t Potsdam}, pages = {122}, year = {2017}, abstract = {Hartmut Asche pr{\"a}gte {\"u}ber ein Vierteljahrhundert maßgeblich die Forschungsfelder der Geoinformation, Visualisierung und Kartographie. Die vorliegende Festschrift stellt eine w{\"u}rdige Gabe von Mitarbeiterinnen und Mitarbeitern des Institutes f{\"u}r Geographie der Universit{\"a}t Potsdam anl{\"a}sslich seiner Emeritierung im M{\"a}rz 2017 dar. International renommierte, Herrn Asches Karriere begleitende Autorinnen und Autoren, konnten f{\"u}r Fachbeitr{\"a}ge aus den Bereichen Geographie, Geoinformatik, Kartographie und Fernerkundung gewonnen werden. Es werden in fachlich hervorragender Weise Schwerpunkte umrissen, mit welchen Herr Asche sich in seiner von zahlreichen H{\"o}hepunkten gepr{\"a}gten wissenschaftlichen Karriere besch{\"a}ftigte.}, language = {de} } @phdthesis{Klisch2003, author = {Klisch, Anja}, title = {Ableitung von Blattfl{\"a}chenindex und Bedeckungsgrad aus Fernerkundungsdaten f{\"u}r das Erosionsmodell EROSION 3D}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001455}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {In den letzten Jahren wurden relativ komplexe Erosionsmodelle entwickelt, deren Teilprozesse immer mehr auf physikalisch begr{\"u}ndeten Ans{\"a}tzen beruhen. Damit verbunden ist eine h{\"o}here Anzahl aktueller Eingangsparameter, deren Bestimmung im Feld arbeits- und kostenaufwendig ist. Zudem werden die Parameter punktuell, also an bestimmten Stellen und nicht fl{\"a}chenhaft wie bei der Fernerkundung, erfasst. Im Rahmen dieser Arbeit wird gezeigt, wie Satellitendaten als relativ kosteng{\"u}nstige Erg{\"a}nzung oder Alternative zur konventionellen Parametererhebung genutzt werden k{\"o}nnen. Dazu werden beispielhaft der Blattfl{\"a}chenindex (LAI) und der Bedeckungsgrad f{\"u}r das physikalisch begr{\"u}ndete Erosionsmodell EROSION 3D abgeleitet. Im Mittelpunkt des Interesses steht dabei das Aufzeigen von existierenden Methoden, die die Basis f{\"u}r eine operationelle Bereitstellung solcher Gr{\"o}ßen nicht nur f{\"u}r Erosions- sondern allgemein f{\"u}r Prozessmodelle darstellen. Als Untersuchungsgebiet dient das prim{\"a}r landwirtschaftlich genutzte Einzugsgebiet des Mehltheuer Baches, das sich im S{\"a}chsischen L{\"o}ßgefilde befindet und f{\"u}r das Simulationsrechnungen mit konventionell erhobenen Eingangsparametern f{\"u}r 29 Niederschlagsereignisse im Jahr 1999 vorliegen [MICHAEL et al. 2000]. Die Fernerkundungsdatengrundlage bilden Landsat-5-TM-Daten vom 13.03.1999, 30.04.1999 und 19.07.1999. Da die Vegetationsparameter f{\"u}r alle Niederschlagsereignisse vorliegen sollen, werden sie basierend auf der Entwicklung des LAI zeitlich interpoliert. Dazu erfolgt zun{\"a}chst die Ableitung des LAI f{\"u}r alle vorhandenen Fruchtarten nach den semi-empirischen Modellen von CLEVERS [1986] und BARET \& GUYOT [1991] mit aus der Literatur entnommenen Koeffizienten. Des Weiteren wird eine Methode untersucht, nach der die Koeffizienten f{\"u}r das Clevers-Modell aus den TM-Daten und einem vereinfachten Wachstumsmodell bestimmt werden. Der Bedeckungsgrad wird nach ROSS [1981] aus dem LAI ermittelt. Die zeitliche Interpolation des LAI wird durch die schlagbezogene Anpassung eines vereinfachten Wachstumsmodells umgesetzt, das dem hydrologischen Modell SWIM [KRYSANOVA et al. 1999] entstammt und in das durchschnittliche Tagestemperaturen eingehen. Mit den genannten Methoden bleiben abgestorbene Pflanzenteile unber{\"u}cksichtigt. Im Vergleich zur konventionellen terrestrischen Parametererhebung erm{\"o}glichen sie eine differenziertere Abbildung r{\"a}umlicher Variabilit{\"a}ten und des zeitlichen Verlaufes der Vegetationsparameter. Die Simulationsrechnungen werden sowohl mit den direkten Bedeckungsgraden aus den TM-Daten (pixelbezogen) als auch mit den zeitlich interpolierten Bedeckungsgraden f{\"u}r alle Ereignisse (schlagbezogen) durchgef{\"u}hrt. Bei beiden Vorgehensweisen wird im Vergleich zur bisherigen Absch{\"a}tzung eine Verbesserung der r{\"a}umlichen Verteilung der Parameter und somit eine r{\"a}umliche Umverteilung von Erosions- und Depositionsfl{\"a}chen erreicht. F{\"u}r die im Untersuchungsgebiet vorliegende r{\"a}umliche Heterogenit{\"a}t (z. B. Schlaggr{\"o}ße) bieten Landsat-TM-Daten eine ausreichend genaue r{\"a}umliche Aufl{\"o}sung. Damit wird nachgewiesen, dass die satellitengest{\"u}tzte Fernerkundung im Rahmen dieser Untersuchungen sinnvoll einsetzbar ist. F{\"u}r eine operationelle Bereitstellung der Parameter mit einem vertretbaren Aufwand ist es erforderlich, die Methoden weiter zu validieren und m{\"o}glichst weitestgehend zu automatisieren.}, language = {de} }