@phdthesis{Hohberger2006, author = {Hohberger, Horst}, title = {Semiclassical asymptotics for the scattering amplitude in the presence of focal points at infinity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11574}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {We consider scattering in \$\R^n\$, \$n\ge 2\$, described by the Schr\"odinger operator \$P(h)=-h^2\Delta+V\$, where \$V\$ is a short-range potential. With the aid of Maslov theory, we give a geometrical formula for the semiclassical asymptotics as \$h\to 0\$ of the scattering amplitude \$f(\omega_-,\omega_+;\lambda,h)\$ \$\omega_+\neq\omega_-\$) which remains valid in the presence of focal points at infinity (caustics). Crucial for this analysis are precise estimates on the asymptotics of the classical phase trajectories and the relationship between caustics in euclidean phase space and caustics at infinity.}, subject = {Mathematik}, language = {en} } @article{Schmidt2015, author = {Schmidt, Joachim}, title = {Die Arbeit bei irreversibler Druck-Volumen-{\"A}nderung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74931}, year = {2015}, abstract = {For the calculation of the work in an irreversible pressure-volume change, we propose approxima-tions, which in contrast to the usual representation in the literature reflect the work performed during expansion and compression symmetrically. The calculations are based on the Reversible-Share-Theorem: Is used the force to overcome for calculating the work, so it captures only the configurational reversible work share.}, language = {de} }