@article{ZollerHainzlHolschneideretal.2005, author = {Zoller, Gert and Hainzl, Sebastian and Holschneider, Matthias and Ben-Zion, Yehuda}, title = {Aftershocks resulting from creeping sections in a heterogeneous fault}, issn = {0094-8276}, year = {2005}, abstract = {We show that realistic aftershock sequences with space-time characteristics compatible with observations are generated by a model consisting of brittle fault segments separated by creeping zones. The dynamics of the brittle regions is governed by static/kinetic friction, 3D elastic stress transfer and small creep deformation. The creeping parts are characterized by high ongoing creep velocities. These regions store stress during earthquake failures and then release it in the interseismic periods. The resulting postseismic deformation leads to aftershock sequences following the modified Omori law. The ratio of creep coefficients in the brittle and creeping sections determines the duration of the postseismic transients and the exponent p of the modified Omori law}, language = {en} } @article{ZollerHolschneiderBenZion2005, author = {Zoller, Gert and Holschneider, Matthias and Ben-Zion, Yehuda}, title = {The role of heterogeneities as a tuning parameter of earthquake dynamics}, issn = {0033-4553}, year = {2005}, abstract = {We investigate the influence of spatial heterogeneities on various aspects of brittle failure and seismicity in a model of a large strike-slip fault. The model dynamics is governed by realistic boundary conditions consisting of constant velocity motion of regions around the fault, static/kinetic friction laws, creep with depth-dependent coefficients, and 3-D elastic stress transfer. The dynamic rupture is approximated on a continuous time scale using a finite stress propagation velocity ("quasidynamic model''). The model produces a "brittle- ductile'' transition at a depth of about 12.5 km, realistic hypocenter distributions, and other features of seismicity compatible with observations. Previous work suggested that the range of size scales in the distribution of strength-stress heterogeneities acts as a tuning parameter of the dynamics. Here we test this hypothesis by performing a systematic parameter-space study with different forms of heterogeneities. In particular, we analyze spatial heterogeneities that can be tuned by a single parameter in two distributions: ( 1) high stress drop barriers in near- vertical directions and ( 2) spatial heterogeneities with fractal properties and variable fractal dimension. The results indicate that the first form of heterogeneities provides an effective means of tuning the behavior while the second does not. In relatively homogeneous cases, the fault self-organizes to large-scale patches and big events are associated with inward failure of individual patches and sequential failures of different patches. The frequency-size event statistics in such cases are compatible with the characteristic earthquake distribution and large events are quasi-periodic in time. In strongly heterogeneous or near-critical cases, the rupture histories are highly discontinuous and consist of complex migration patterns of slip on the fault. In such cases, the frequency-size and temporal statistics follow approximately power-law relations}, language = {en} }