@article{BrosnanSchlaadAntonietti2015, author = {Brosnan, Sarah M. and Schlaad, Helmut and Antonietti, Markus}, title = {Aqueous Self-Assembly of Purely Hydrophilic Block Copolymers into Giant Vesicles}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {33}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201502100}, pages = {9715 -- 9718}, year = {2015}, abstract = {Self-assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self-assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500nm) and microsized (>5m) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics.}, language = {en} } @article{KedrackiFilippovGouretal.2015, author = {Kedracki, Dawid and Filippov, Sergey K. and Gour, Nidhi and Schlaad, Helmut and Nardin, Corinne}, title = {Formation of DNA-Copolymer Fibrils Through an Amyloid-Like Nucleation Polymerization Mechanism}, series = {Macromolecular rapid communications}, volume = {36}, journal = {Macromolecular rapid communications}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201400728}, pages = {768 -- 773}, year = {2015}, abstract = {Conjugation of a hydrophobic poly(2-oxazoline) bearing tertiary amide groups along its backbone with a short single stranded nucleotide sequence results in an amphiphilic comb/graft copolymer, which organizes in fibrils upon direct dissolution in water. Supported by circular dichroism, atomic force microscopy, transmission electron microscopy, and scattering data, fibrils are formed through inter- and intramolecular hydrogen bonding between hydrogen accepting amide groups along the polymer backbone and hydrogen donating nucleic acid grafts leading to the formation of hollow tubes.}, language = {en} } @article{NoackSchanzenbachKoetzetal.2018, author = {Noack, Sebastian and Schanzenbach, Dirk and Koetz, Joachim and Schlaad, Helmut}, title = {Polylactide-based amphiphilic block copolymers}, series = {Macromolecular rapid communications}, volume = {40}, journal = {Macromolecular rapid communications}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201800639}, pages = {6}, year = {2018}, abstract = {The aqueous self-assembly behavior of a series of poly(ethylene glycol)-poly(l-/d-lactide) block copolymers and corresponding stereocomplexes is examined by differential scanning calorimetry, dynamic light scattering, and transmission electron microscopy. Block copolymers assemble into spherical micelles and worm-like aggregates at room temperature, whereby the fraction of the latter seemingly increases with decreasing lactide weight fraction or hydrophobicity. The formation of the worm-like aggregates arises from the crystallization of the polylactide by which the spherical micelles become colloidally unstable and fuse epitaxically with other micelles. The self-assembly behavior of the stereocomplex aggregates is found to be different from that of the block copolymers, resulting in rather irregular-shaped clusters of spherical micelles and pearl-necklace-like structures.}, language = {en} } @phdthesis{Schlaad2005, author = {Schlaad, Helmut}, title = {Polymer self-assembly : adding complexity to mesostructures of diblock copolymers by specific interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001824}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In dieser Arbeit wurde die Rolle selektiver, nicht-kovalenter Wechselwirkungen bei der Selbstorganisation von Diblockcopolymeren untersucht. Durch Einf{\"u}hrung elektrostatischer, dipolarer Wechselwirkungen oder Wasserstoffbr{\"u}ckenbindungen sollte es gelingen, komplexe Mesostrukturen zu erzeugen und die Ordnung vom Nanometerbereich auf gr{\"o}ßere L{\"a}ngenskalen auszuweiten. Diese Arbeit ist im Rahmen von Biomimetik zu sehen, da sie Konzepte der synthetischen Polymer- und Kolloidchemie und Grundprinzipien der Strukturbildung in supramolekularen und biologischen Systemen verbindet. Folgende Copolymersysteme wurden untersucht: (i) Blockionomere, (ii) Blockcopolymere mit chelatisierenden Acetoacetoxyeinheiten und (iii) Polypeptid-Blockcopolymere.}, language = {en} }