@article{CasselRischMayeretal.2019, author = {Cassel, Michael and Risch, Lucie and Mayer, Frank and Kaplick, Hannes and Engel, Aaron and Kulig, Kornelia and Bashford, Greg}, title = {Achilles tendon morphology assessed using image based spatial frequency analysis is altered among healthy elite adolescent athletes compared to recreationally active controls}, series = {Journal of science and medicine in sport : official journal of Sports Medicine Australia}, volume = {22}, journal = {Journal of science and medicine in sport : official journal of Sports Medicine Australia}, number = {8}, publisher = {Elsevier}, address = {Oxford}, issn = {1440-2440}, doi = {10.1016/j.jsams.2019.03.011}, pages = {882 -- 886}, year = {2019}, abstract = {Objectives: Although expected, tendon adaptations in adolescent elite athletes have been underreported. Morphologically, adaptations may occur by an increase in collagen fiber density and/or organization. These characteristics can be captured using spatial frequency parameters extracted from ultrasound images. This study aims to compare Achilles tendon (AT) morphology among sports-specific cohorts of elite adolescent athletes and to compare these findings to recreationally active controls by use of spatial frequency analysis. Design: Cross-sectional observational study. Method: In total, 334 healthy adolescent athletes from four sport categories (ball, combat, endurance, explosive strength) and 35 healthy controls were included. Longitudinal ultrasound scans were performed at the AT insertion and midportion. Intra-tendinous-morphology was quantified by performing spatial frequency analysis assessing eight parameters at standardized ROls. Increased values in five parameters suggest a higher structural organization, and in two parameters higher fiber density. One parameter represents a quotient combining both organization and fiber density. Results: Among athletes, only ball sport athletes exhibited an increase in one summative parameter at pre-insertion site compared to athletes from other sport categories. When compared to athletes, controls had significantly higher values of four parameters at pre-insertion and three parameters at midportion site reflecting differences in both, fiber organization and density. Conclusions: Intra-tendinous-morphology was similar in all groups of adolescent athletes. Higher values found in non-athletes might suggest higher AT fiber density and organization. It is yet unclear whether the lesser structural organization in young athletes represents initial AT pathology, or a physiological adaptive response at the fiber cross-linking level. (C) 2019 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.}, language = {en} } @inproceedings{RischBashfordKuligetal.2020, author = {Risch, Lucie and Bashford, Greg and Kulig, Kornelia and Kaplick, Hannes and Mayer, Frank and Cassel, Michael}, title = {Spatial frequency analysis identifies altered local Micromorphology in adolescent athletes with Achilles tendinopathy}, series = {Medicine and science in sports and exercise : MSSE ; official journal of the American College of Sports Medicine}, volume = {52}, booktitle = {Medicine and science in sports and exercise : MSSE ; official journal of the American College of Sports Medicine}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/01.mss.0000670932.99564.57}, pages = {82 -- 82}, year = {2020}, language = {en} } @article{RowleyEngelKulig2020, author = {Rowley, K. Michael and Engel, Tilman and Kulig, Kornelia}, title = {Trunk and hip muscle activity during the Balance-Dexterity task in persons with and without recurrent low back pain}, series = {Journal of electromyography and kinesiology}, volume = {50}, journal = {Journal of electromyography and kinesiology}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2019.102378}, pages = {7}, year = {2020}, abstract = {Coordination of the trunk and hips is crucial for successful dynamic balance in many activities of daily living. Persons with recurrent low back pain (rLBP), both while symptomatic and during periods of symptom remission, exhibit dysfunctional muscle activation patterns and coordination of these joints. In a novel dynamic balance task where persons in remission from rLBP exhibit dissociated trunk motion, it is unknown how trunk and hip musculature are coordinated. Activation of hip and trunk muscles were acquired from nineteen persons with and without rLBP during the Balance-Dexterity Task, which involves balancing on one limb while compressing an unstable spring with the other. There were no between-group differences in activation amplitude for any muscle groups tested. In back-healthy control participants, hip and trunk muscle activation amplitudes increased proportionally in response to the added instability of the spring (R = 0.837, p < 0.001). Increases in muscle activation amplitudes in the group in remission from rLBP were not proportional (R = 0.113, p = 0.655). Instead, hip muscle activation in this group was associated with task performance, i.e. dexterous control of the spring (R = 0.676, p = 0.002). These findings highlight atypical coordination of hip and trunk musculature potentially related to task demands in persons with rLBP even during remission from pain.}, language = {en} }