@book{BraunFeudelGuzdar1998, author = {Braun, Robert and Feudel, Fred and Guzdar, P.}, title = {The route to chaos for a two-dimensional externally driven flow : [to appear in Physical Review E]}, series = {Preprint NLD}, volume = {46}, journal = {Preprint NLD}, publisher = {Univ. Potsdam}, address = {Potsdam}, issn = {1432-2935}, pages = {7 S. : graph. Darst.}, year = {1998}, language = {en} } @book{BraunFeudelSeehafer1997, author = {Braun, Robert and Feudel, Fred and Seehafer, Norbert}, title = {Bifurcations and chaos in an array of forced vortices}, series = {Preprint NLD}, volume = {37}, journal = {Preprint NLD}, publisher = {Univ. Potsdam}, address = {Potsdam}, issn = {1432-2935}, pages = {7 S. : graph. Darst.}, year = {1997}, language = {en} } @book{Boeckmann1997, author = {B{\"o}ckmann, Christine}, title = {Retrieval of multimodal aerosol size distribution by inversion of multiwavelength data}, series = {Preprint NLD}, volume = {38}, journal = {Preprint NLD}, publisher = {Univ. Potsdam}, address = {Potsdam}, issn = {1432-2935}, pages = {[12] S. : graph. Darst.}, year = {1997}, language = {en} } @book{CramerEisertIlluminati2004, author = {Cramer, Marcus and Eisert, Jens and Illuminati, Fabrizio}, title = {Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices}, issn = {0031-9007}, year = {2004}, abstract = {We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose- Fermi mixtures in optical lattices}, language = {en} } @book{DonnerCserSchwarzetal.2004, author = {Donner, Reik Volker and Cser, Adrienn and Schwarz, Udo and Otto, Andreas H. and Feudel, Ulrike}, title = {An approach to a process model of laser beam melt ablation using methods of linear and non-linear data analysis}, isbn = {3-527-40430-9}, year = {2004}, abstract = {As a non-contact process laser beam melt ablation offers several advantages compared to conventional processing mechanisms. During ablation the surface of the workpiece is molten by the energy of a CO2-laser beam, this melt is then driven out by the impulse of an additional process gas. Although the idea behind laser beam melt ablation is rather simple, the process itself has a major limitation in practical applications: with increasing ablation rate surface quality of the workpiece processed declines rapidly. With different ablation rates different surface structures can be distinguished, which can be characterised by suitable surface parameters. The corresponding regimes of pattern formation are found in linear and non-linear statistical properties of the recorded process emissions as well. While the ablation rate can be represented in terms of the line-energy, this parameter does not provide sufficient information about the full behaviour of the system. The dynamics of the system is dominated by oscillations due to the laser cycle but includes some periodically driven non-linear processes as well. Upon the basis of the measured time series, a corresponding model is developed. The deeper understanding of the process can be used to develop strategies for a process control.}, language = {en} } @book{DonnerCserSchwarzetal.2003, author = {Donner, Reik Volker and Cser, Adrienn and Schwarz, Udo and Otto, Andreas H. and Feudel, Ulrike}, title = {An approach to a process model of laser beam melt ablation using methods of linear and non-linear data analysis}, isbn = {3-928921-88-6}, year = {2003}, abstract = {As a non-contact process laser beam melt ablation offers several advantages compared to conventional processing mechanisms. During ablation the surface of the workpiece is molten by the energy of a CO2-laser beam, this melt is then driven out by the impulse of an additional process gas. Although the idea behind laser beam melt ablation is rather simple, the process itself has a major limitation in practical applications: with increasing ablation rate surface quality of the workpiece processed declines rapidly. With different ablation rates different surface structures can be distinguished, which can be characterised by suitable surface parameters. The corresponding regimes of pattern formation are found in linear and non-linear statistical properties of the recorded process emissions as well. While the ablation rate can be represented in terms of the line-energy, this parameter does not provide sufficient information about the full behaviour of the system. The dynamics of the system is dominated by oscillations due to the laser cycle but includes some periodically driven non-linear processes as well. Upon the basis of the measured time series, a corresponding model is developed. The deeper understanding of the process can be used to develop strategies for a process control.}, language = {en} } @book{Engbert1997, author = {Engbert, Ralf}, title = {Tempo-induced transitions in polyrhythmic hand movements}, series = {Preprint NLD}, volume = {41}, journal = {Preprint NLD}, publisher = {Univ. Potsdam}, address = {Potsdam}, issn = {1432-2935}, pages = {12 S. : graph. Darst.}, year = {1997}, language = {en} } @book{Feldmeier2019, author = {Feldmeier, Achim}, title = {Theoretical Fluid Dynamics}, series = {Theoretical and Mathematical Physics}, journal = {Theoretical and Mathematical Physics}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-31021-9 (online)}, doi = {10.1007/978-3-030-31022-6}, pages = {XVI, 569}, year = {2019}, language = {en} } @book{FreudeKuznetsovPikovskij2006, author = {Freude, Ulrike and Kuznetsov, Sergey P. and Pikovskij, Arkadij}, title = {Strange nonchaotic attractors : dynamics between order and chaos in Quasiperiodically Forced Systems}, publisher = {World Scientific}, address = {Singapore}, isbn = {981-256633-3}, pages = {350 S.}, year = {2006}, language = {en} } @book{Gutlederer2007, author = {Gutlederer, Erwin Johann}, title = {On the morphology of vesicles. - [{\"u}berarb. Diss.]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15065}, publisher = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This dissertation contains theoretical investigations on the morphology and statistical mechanics of vesicles. The shapes of homogeneous fluid vesicles and inhomogeneous vesicles with fluid and solid membrane domains are calculated. The influence of thermal fluctuations is investigated. The obtained results are valid on mesoscopic length scales and are based on a geometrical membrane model, where the vesicle membrane is described as either a static or a thermal fluctuating surface. The thesis consists of three parts. In the first part, homogeneous vesicles are considered. The focus in this part is on the thermally induced morphological transition between vesicles with prolate and oblate shape. With the help of Monte Carlo simulations, the free energy profile of these vesicles is determined. It can be shown that the shape transformation between prolate and oblate vesicles proceeds continuously and is not hampered by a free energy barrier. The second and third part deal with inhomogeneous vesicles which contain intramembrane domains. These investigations are motivated by experimental results on domain formation in single or multicomponent vesicles, where phase separation occurs and different membrane phases coexist. The resulting domains differ with regard to their membrane structure (solid, fluid). The membrane structure has a distinct effect on the form of the domain and the morphology of the vesicle. In the second part, vesicles with coexisting solid and fluid membrane domains are studied, while the third part addresses vesicles with coexisting fluid domains. The equilibrium morphology of vesicles with simple and complex domain forms, derived through minimisation of the membrane energy, is determined as a function of material parameters. The results are summarised in morphology diagrams. These diagrams show previously unknown morphological transitions between vesicles with different domain shapes. The impact of thermal fluctuations on the vesicle and the form of the domains is investigated by means of Monte Carlo simulations.}, language = {en} }