@book{AppeltauerHirschfeld2012, author = {Appeltauer, Malte and Hirschfeld, Robert}, title = {The JCop language specification : Version 1.0, April 2012}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-193-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60208}, publisher = {Universit{\"a}t Potsdam}, pages = {iv, 48}, year = {2012}, abstract = {Program behavior that relies on contextual information, such as physical location or network accessibility, is common in today's applications, yet its representation is not sufficiently supported by programming languages. With context-oriented programming (COP), such context-dependent behavioral variations can be explicitly modularized and dynamically activated. In general, COP could be used to manage any context-specific behavior. However, its contemporary realizations limit the control of dynamic adaptation. This, in turn, limits the interaction of COP's adaptation mechanisms with widely used architectures, such as event-based, mobile, and distributed programming. The JCop programming language extends Java with language constructs for context-oriented programming and additionally provides a domain-specific aspect language for declarative control over runtime adaptations. As a result, these redesigned implementations are more concise and better modularized than their counterparts using plain COP. JCop's main features have been described in our previous publications. However, a complete language specification has not been presented so far. This report presents the entire JCop language including the syntax and semantics of its new language constructs.}, language = {en} } @book{BaltzerHradilakPfennigschmidtetal.2021, author = {Baltzer, Wanda and Hradilak, Theresa and Pfennigschmidt, Lara and Prestin, Luc Maurice and Spranger, Moritz and Stadlinger, Simon and Wendt, Leo and Lincke, Jens and Rein, Patrick and Church, Luke and Hirschfeld, Robert}, title = {An individual-centered approach to visualize people's opinions and demographic information}, number = {136}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-504-0}, issn = {1613-5652}, doi = {10.25932/publishup-49145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-491457}, publisher = {Universit{\"a}t Potsdam}, pages = {326}, year = {2021}, abstract = {The noble way to substantiate decisions that affect many people is to ask these people for their opinions. For governments that run whole countries, this means asking all citizens for their views to consider their situations and needs. Organizations such as Africa's Voices Foundation, who want to facilitate communication between decision-makers and citizens of a country, have difficulty mediating between these groups. To enable understanding, statements need to be summarized and visualized. Accomplishing these goals in a way that does justice to the citizens' voices and situations proves challenging. Standard charts do not help this cause as they fail to create empathy for the people behind their graphical abstractions. Furthermore, these charts do not create trust in the data they are representing as there is no way to see or navigate back to the underlying code and the original data. To fulfill these functions, visualizations would highly benefit from interactions to explore the displayed data, which standard charts often only limitedly provide. To help improve the understanding of people's voices, we developed and categorized 80 ideas for new visualizations, new interactions, and better connections between different charts, which we present in this report. From those ideas, we implemented 10 prototypes and two systems that integrate different visualizations. We show that this integration allows consistent appearance and behavior of visualizations. The visualizations all share the same main concept: representing each individual with a single dot. To realize this idea, we discuss technologies that efficiently allow the rendering of a large number of these dots. With these visualizations, direct interactions with representations of individuals are achievable by clicking on them or by dragging a selection around them. This direct interaction is only possible with a bidirectional connection from the visualization to the data it displays. We discuss different strategies for bidirectional mappings and the trade-offs involved. Having unified behavior across visualizations enhances exploration. For our prototypes, that includes grouping, filtering, highlighting, and coloring of dots. Our prototyping work was enabled by the development environment Lively4. We explain which parts of Lively4 facilitated our prototyping process. Finally, we evaluate our approach to domain problems and our developed visualization concepts. Our work provides inspiration and a starting point for visualization development in this domain. Our visualizations can improve communication between citizens and their government and motivate empathetic decisions. Our approach, combining low-level entities to create visualizations, provides value to an explorative and empathetic workflow. We show that the design space for visualizing this kind of data has a lot of potential and that it is possible to combine qualitative and quantitative approaches to data analysis.}, language = {en} } @book{BeckmannHildebrandJascheketal.2019, author = {Beckmann, Tom and Hildebrand, Justus and Jaschek, Corinna and Krebs, Eva and L{\"o}ser, Alexander and Taeumel, Marcel and Pape, Tobias and Fister, Lasse and Hirschfeld, Robert}, title = {The font engineering platform}, number = {128}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-464-7}, issn = {1613-5652}, doi = {10.25932/publishup-42748}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427487}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 115}, year = {2019}, abstract = {Creating fonts is a complex task that requires expert knowledge in a variety of domains. Often, this knowledge is not held by a single person, but spread across a number of domain experts. A central concept needed for designing fonts is the glyph, an elemental symbol representing a readable character. Required domains include designing glyph shapes, engineering rules to combine glyphs for complex scripts and checking legibility. This process is most often iterative and requires communication in all directions. This report outlines a platform that aims to enhance the means of communication, describes our prototyping process, discusses complex font rendering and editing in a live environment and an approach to generate code based on a user's live-edits.}, language = {en} } @book{CalmezHesseSiegmundetal.2013, author = {Calmez, Conrad and Hesse, Hubert and Siegmund, Benjamin and Stamm, Sebastian and Thomschke, Astrid and Hirschfeld, Robert and Ingalls, Dan and Lincke, Jens}, title = {Explorative authoring of Active Web content in a mobile environment}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-232-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64054}, publisher = {Universit{\"a}t Potsdam}, pages = {132}, year = {2013}, abstract = {Developing rich Web applications can be a complex job - especially when it comes to mobile device support. Web-based environments such as Lively Webwerkstatt can help developers implement such applications by making the development process more direct and interactive. Further the process of developing software is collaborative which creates the need that the development environment offers collaboration facilities. This report describes extensions of the webbased development environment Lively Webwerkstatt such that it can be used in a mobile environment. The extensions are collaboration mechanisms, user interface adaptations but as well event processing and performance measuring on mobile devices.}, language = {en} } @book{DuerschReinMattisetal.2022, author = {D{\"u}rsch, Falco and Rein, Patrick and Mattis, Toni and Hirschfeld, Robert}, title = {Learning from failure}, number = {145}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-528-6}, issn = {1613-5652}, doi = {10.25932/publishup-53755}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-537554}, publisher = {Universit{\"a}t Potsdam}, pages = {87}, year = {2022}, abstract = {Regression testing is a widespread practice in today's software industry to ensure software product quality. Developers derive a set of test cases, and execute them frequently to ensure that their change did not adversely affect existing functionality. As the software product and its test suite grow, the time to feedback during regression test sessions increases, and impedes programmer productivity: developers wait longer for tests to complete, and delays in fault detection render fault removal increasingly difficult. Test case prioritization addresses the problem of long feedback loops by reordering test cases, such that test cases of high failure probability run first, and test case failures become actionable early in the testing process. We ask, given test execution schedules reconstructed from publicly available data, to which extent can their fault detection efficiency improved, and which technique yields the most efficient test schedules with respect to APFD? To this end, we recover regression 6200 test sessions from the build log files of Travis CI, a popular continuous integration service, and gather 62000 accompanying changelists. We evaluate the efficiency of current test schedules, and examine the prioritization results of state-of-the-art lightweight, history-based heuristics. We propose and evaluate a novel set of prioritization algorithms, which connect software changes and test failures in a matrix-like data structure. Our studies indicate that the optimization potential is substantial, because the existing test plans score only 30\% APFD. The predictive power of past test failures proves to be outstanding: simple heuristics, such as repeating tests with failures in recent sessions, result in efficiency scores of 95\% APFD. The best-performing matrix-based heuristic achieves a similar score of 92.5\% APFD. In contrast to prior approaches, we argue that matrix-based techniques are useful beyond the scope of effective prioritization, and enable a number of use cases involving software maintenance. We validate our findings from continuous integration processes by extending a continuous testing tool within development environments with means of test prioritization, and pose further research questions. We think that our findings are suited to propel adoption of (continuous) testing practices, and that programmers' toolboxes should contain test prioritization as an existential productivity tool.}, language = {en} } @book{EichenrothReinHirschfeld2022, author = {Eichenroth, Friedrich and Rein, Patrick and Hirschfeld, Robert}, title = {Fast packrat parsing in a live programming environment}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, number = {135}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-503-3}, issn = {1613-5652}, doi = {10.25932/publishup-49124}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-491242}, publisher = {Universit{\"a}t Potsdam}, pages = {79}, year = {2022}, abstract = {Language developers who design domain-specific languages or new language features need a way to make fast changes to language definitions. Those fast changes require immediate feedback. Also, it should be possible to parse the developed languages quickly to handle extensive sets of code. Parsing expression grammars provides an easy to understand method for language definitions. Packrat parsing is a method to parse grammars of this kind, but this method is unable to handle left-recursion properly. Existing solutions either partially rewrite left-recursive rules and partly forbid them, or use complex extensions to packrat parsing that are hard to understand and cost-intensive. We investigated methods to make parsing as fast as possible, using easy to follow algorithms while not losing the ability to make fast changes to grammars. We focused our efforts on two approaches. One is to start from an existing technique for limited left-recursion rewriting and enhance it to work for general left-recursive grammars. The second approach is to design a grammar compilation process to find left-recursion before parsing, and in this way, reduce computational costs wherever possible and generate ready to use parser classes. Rewriting parsing expression grammars is a task that, if done in a general way, unveils a large number of cases such that any rewriting algorithm surpasses the complexity of other left-recursive parsing algorithms. Lookahead operators introduce this complexity. However, most languages have only little portions that are left-recursive and in virtually all cases, have no indirect or hidden left-recursion. This means that the distinction of left-recursive parts of grammars from components that are non-left-recursive holds great improvement potential for existing parsers. In this report, we list all the required steps for grammar rewriting to handle left-recursion, including grammar analysis, grammar rewriting itself, and syntax tree restructuring. Also, we describe the implementation of a parsing expression grammar framework in Squeak/Smalltalk and the possible interactions with the already existing parser Ohm/S. We quantitatively benchmarked this framework directing our focus on parsing time and the ability to use it in a live programming context. Compared with Ohm, we achieved massive parsing time improvements while preserving the ability to use our parser it as a live programming tool. The work is essential because, for one, we outlined the difficulties and complexity that come with grammar rewriting. Also, we removed the existing limitations that came with left-recursion by eliminating them before parsing.}, language = {en} } @book{FelgentreffBorningHirschfeld2013, author = {Felgentreff, Tim and Borning, Alan and Hirschfeld, Robert}, title = {Babelsberg : specifying and solving constraints on object behavior}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-265-0}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67296}, publisher = {Universit{\"a}t Potsdam}, pages = {53}, year = {2013}, abstract = {Constraints allow developers to specify desired properties of systems in a number of domains, and have those properties be maintained automatically. This results in compact, declarative code, avoiding scattered code to check and imperatively re-satisfy invariants. Despite these advantages, constraint programming is not yet widespread, with standard imperative programming still the norm. There is a long history of research on integrating constraint programming with the imperative paradigm. However, this integration typically does not unify the constructs for encapsulation and abstraction from both paradigms. This impedes re-use of modules, as client code written in one paradigm can only use modules written to support that paradigm. Modules require redundant definitions if they are to be used in both paradigms. We present a language - Babelsberg - that unifies the constructs for en- capsulation and abstraction by using only object-oriented method definitions for both declarative and imperative code. Our prototype - Babelsberg/R - is an extension to Ruby, and continues to support Ruby's object-oriented se- mantics. It allows programmers to add constraints to existing Ruby programs in incremental steps by placing them on the results of normal object-oriented message sends. It is implemented by modifying a state-of-the-art Ruby virtual machine. The performance of standard object-oriented code without con- straints is only modestly impacted, with typically less than 10\% overhead compared with the unmodified virtual machine. Furthermore, our architec- ture for adding multiple constraint solvers allows Babelsberg to deal with constraints in a variety of domains. We argue that our approach provides a useful step toward making con- straint solving a generic tool for object-oriented programmers. We also provide example applications, written in our Ruby-based implementation, which use constraints in a variety of application domains, including interactive graphics, circuit simulations, data streaming with both hard and soft constraints on performance, and configuration file Management.}, language = {en} } @book{FelgentreffHirschfeldMillsteinetal.2015, author = {Felgentreff, Tim and Hirschfeld, Robert and Millstein, Todd and Borning, Alan}, title = {Babelsberg/RML}, number = {103}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-348-0}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-83826}, publisher = {Universit{\"a}t Potsdam}, pages = {68}, year = {2015}, abstract = {New programming language designs are often evaluated on concrete implementations. However, in order to draw conclusions about the language design from the evaluation of concrete programming languages, these implementations need to be verified against the formalism of the design. To that end, we also have to ensure that the design actually meets its stated goals. A useful tool for the latter has been to create an executable semantics from a formalism that can execute a test suite of examples. However, this mechanism so far did not allow to verify an implementation against the design. Babelsberg is a new design for a family of object-constraint languages. Recently, we have developed a formal semantics to clarify some issues in the design of those languages. Supplementing this work, we report here on how this formalism is turned into an executable operational semantics using the RML system. Furthermore, we show how we extended the executable semantics to create a framework that can generate test suites for the concrete Babelsberg implementations that provide traceability from the design to the language. Finally, we discuss how these test suites helped us find and correct mistakes in the Babelsberg implementation for JavaScript.}, language = {en} } @book{FreundRaetschHradilaketal.2022, author = {Freund, Rieke and R{\"a}tsch, Jan Philip and Hradilak, Franziska and Vidic, Benedikt and Heß, Oliver and Lißner, Nils and W{\"o}lert, Hendrik and Lincke, Jens and Beckmann, Tom and Hirschfeld, Robert}, title = {Implementing a crowd-sourced picture archive for Bad Harzburg}, number = {149}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-545-3}, issn = {1613-5652}, doi = {10.25932/publishup-56029}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560291}, publisher = {Universit{\"a}t Potsdam}, pages = {x, 191}, year = {2022}, abstract = {Pictures are a medium that helps make the past tangible and preserve memories. Without context, they are not able to do so. Pictures are brought to life by their associated stories. However, the older pictures become, the fewer contemporary witnesses can tell these stories. Especially for large, analog picture archives, knowledge and memories are spread over many people. This creates several challenges: First, the pictures must be digitized to save them from decaying and make them available to the public. Since a simple listing of all the pictures is confusing, the pictures should be structured accessibly. Second, known information that makes the stories vivid needs to be added to the pictures. Users should get the opportunity to contribute their knowledge and memories. To make this usable for all interested parties, even for older, less technophile generations, the interface should be intuitive and error-tolerant. The resulting requirements are not covered in their entirety by any existing software solution without losing the intuitive interface or the scalability of the system. Therefore, we have developed our digital picture archive within the scope of a bachelor project in cooperation with the Bad Harzburg-Stiftung. For the implementation of this web application, we use the UI framework React in the frontend, which communicates via a GraphQL interface with the Content Management System Strapi in the backend. The use of this system enables our project partner to create an efficient process from scanning analog pictures to presenting them to visitors in an organized and annotated way. To customize the solution for both picture delivery and information contribution for our target group, we designed prototypes and evaluated them with people from Bad Harzburg. This helped us gain valuable insights into our system's usability and future challenges as well as requirements. Our web application is already being used daily by our project partner. During the project, we still came up with numerous ideas for additional features to further support the exchange of knowledge.}, language = {en} } @book{GellerHirschfeldBracha2010, author = {Geller, Felix and Hirschfeld, Robert and Bracha, Gilad}, title = {Pattern Matching for an object-oriented and dynamically typed programming language}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-065-6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-43035}, publisher = {Universit{\"a}t Potsdam}, pages = {81}, year = {2010}, abstract = {Pattern matching is a well-established concept in the functional programming community. It provides the means for concisely identifying and destructuring values of interest. This enables a clean separation of data structures and respective functionality, as well as dispatching functionality based on more than a single value. Unfortunately, expressive pattern matching facilities are seldomly incorporated in present object-oriented programming languages. We present a seamless integration of pattern matching facilities in an object-oriented and dynamically typed programming language: Newspeak. We describe language extensions to improve the practicability and integrate our additions with the existing programming environment for Newspeak. This report is based on the first author's master's thesis.}, language = {en} }