@article{WolffKristenJennySchettleretal.2014, author = {Wolff, Christian Michael and Kristen-Jenny, Iris and Schettler, Georg and Plessen, Birgit and Meyer, Hanno and Dulski, Peter and Naumann, Rudolf and Brauer, Achim and Verschuren, Dirk and Haug, Gerald H.}, title = {Modern seasonality in Lake Challa (Kenya/Tanzania) and its sedimentary documentation in recent lake sediments}, series = {Limnology and oceanography}, volume = {59}, journal = {Limnology and oceanography}, number = {5}, publisher = {Wiley}, address = {Waco}, issn = {0024-3590}, doi = {10.4319/lo.2014.59.5.1621}, pages = {1621 -- 1636}, year = {2014}, abstract = {From November 2006 to January 2010, a sediment trap that was cleared monthly was deployed in Lake Challa, a deep stratified freshwater lake on the eastern slope of Mt. Kilimanjaro in southern Kenya. Geochemical data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to characterize the effect of single parameters on productivity and sedimentation processes in the crater basin. During the southern hemisphere summer (November-March), when the water temperature is high and the lake is biologically productive (nondiatom algae), calcite predominated in the sediment trap samples. During the "long rain" season (March-May) a small amount of organic matter and lithogenic material caused by rainfall appeared. This was followed by the cool and windy months of the southern hemisphere winter (June-October) when diatoms were the main component, indicating a diatom bloom initiated by improvement of nutrient availability related to upwelling processes. The sediment trap data support the hypothesis that the light-dark lamination couplets, which are abundant in Lake Challa cores, reflect seasonal delivery to the sediments of diatom-rich particulates during the windy months and diatom-poor material during the wet season. However, interannual and spatial variability in upwelling and productivity patterns, as well as El Nino-Southern Oscillation (ENSO)-related rainfall and drought cycles, exert a strong influence on the magnitude and geochemical composition of particle export to the hypolimnion of Lake Challa.}, language = {en} }