@article{ScharsichLohwasserSommeretal.2012, author = {Scharsich, Christina and Lohwasser, Ruth H. and Sommer, Michael and Asawapirom, Udom and Scherf, Ullrich and Thelakkat, Mukundan and Neher, Dieter and Koehler, Anna}, title = {Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method}, series = {Journal of polymer science : B, Polymer physics}, volume = {50}, journal = {Journal of polymer science : B, Polymer physics}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0887-6266}, doi = {10.1002/polb.23022}, pages = {442 -- 453}, year = {2012}, abstract = {Aggregate formation in poly(3-hexylthiophene) depends on molecular weight, solvent, and synthetic method. The interplay of these parameters thus largely controls device performance. In order to obtain a quantitative understanding on how these factors control the resulting electronic properties of P3HT, we measured absorption in solution and in thin films as well as the resulting field effect mobility in transistors. By a detailed analysis of the absorption spectra, we deduce the fraction of aggregates formed, the excitonic coupling within the aggregates, and the conjugation length within the aggregates, all as a function of solvent quality for molecular weights from 5 to 19 kDa. From this, we infer in which structure the aggregated chains pack. Although the 5 kDa samples form straight chains, the 11 and 19 kDa chains are kinked or folded, with conjugation lengths that increase as the solvent quality reduces. There is a maximum fraction of aggregated chains (about 55 +/- 5\%) that can be obtained, even for poor solvent quality. We show that inducing aggregation in solution leads to control of aggregate properties in thin films. As expected, the field-effect mobility correlates with the propensity to aggregation. Correspondingly, we find that a well-defined synthetic approach, tailored to give a narrow molecular weight distribution, is needed to obtain high field effect mobilities of up to 0.01 cm2/Vs for low molecular weight samples (=11 kDa), while the influence of synthetic method is negligible for samples of higher molecular weight, if low molecular weight fractions are removed by extraction.}, language = {en} } @article{WessigFreyseSchusteretal.2020, author = {Wessig, Pablo and Freyse, Daniel and Schuster, David and Kelling, Alexandra}, title = {Fluorescent dyes with large stokes shifts based on Benzo[1,2-d:4,5-d']bis([1,3]dithiole) ("S4-DBD Dyes")}, series = {Europan journal of organic chemistry}, volume = {2020}, journal = {Europan journal of organic chemistry}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202000093}, pages = {1732 -- 1744}, year = {2020}, abstract = {We report on a further development of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes by replacement of the four oxygen atoms of the heterocyclic core by sulfur atoms. This variation causes striking changes of the photophysical properties. Whereas absorption and emission significantly shifted to longer wavelength, the fluorescence lifetimes and quantum yields are diminished compared to DBD dyes. The latter effect is presumably caused by an enhanced intersystem crossing to the triplet state due to the sulfur atoms. The very large Stokes shifts of the S-4-DBD dyes ranging from 3000 cm(-1) to 7400 cm(-1) (67 nm to 191 nm) should be especially emphasized. By analogy with DBD dyes a broad variation of absorption and emission wavelength is possible by introducing different electron withdrawing substituents. Moreover, some derivatives for coupling with biomolecules were developed.}, language = {en} } @article{WessigJohnSperlichetal.2020, author = {Wessig, Pablo and John, Leonard and Sperlich, Eric and Kelling, Alexandra}, title = {Sulfur tuning of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes}, series = {European journal of organic chemistry}, volume = {2021}, journal = {European journal of organic chemistry}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202001418}, pages = {499 -- 511}, year = {2020}, abstract = {The replacement of oxygen by sulfur atoms of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes is an efficient way to adjust the photophysical properties (sulfur tuning). While previously developed S-4-DBD dyes exhibit considerably red-shifted absorption and emission wavelength, the heavy atom effect of four sulfur atoms cause low fluorescence quantum yields and short fluorescence lifetimes. Herein, we demonstrate that the replacement of less than four sulfur atoms (S-1-DBD, 1,2-S-2-DBD, and 1,4-S-2-DBD dyes) permits a fine-tuning of the photophysical properties. In some cases, a similar influence on the wavelength without the detrimental effect on the quantum yields and lifetimes is observed. Furthermore, the synthetic accessibility of S-1- and S-2-DBD dyes is improved, compared with S-4-DBD dyes. For coupling with biomolecules a series of reactive derivatives of the new dyes were developed (azides, OSu esters, alkynes, maleimides).}, language = {en} } @article{WongAstYuetal.2016, author = {Wong, Joseph K. -H. and Ast, Sandra and Yu, Mingfeng and Flehr, Roman and Counsell, Andrew J. and Turner, Peter and Crisologo, Patrick and Todd, Matthew H. and Rutledge, Peter J.}, title = {Synthesis and Evaluation of 1,8-Disubstituted-Cyclam/Naphthalimide Conjugates as Probes for Metal Ions}, series = {ChemistryOpen : including thesis treasury}, volume = {5}, journal = {ChemistryOpen : including thesis treasury}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.201600010}, pages = {375 -- 385}, year = {2016}, abstract = {Fluorescent molecular probes for metal ions have a raft of potential applications in chemistry and biomedicine. We report the synthesis and photophysical characterisation of 1,8-disubstituted-cyclam/naphthalimide conjugates and their zinc complexes. An efficient synthesis of 1,8-bis-(2-azidoethyl)cyclam has been developed and used to prepare 1,8-disubstituted triazolyl-cyclam systems, in which the pendant group is connected to triazole C4. UV/Vis and fluorescence emission spectra, zinc binding experiments, fluorescence quantum yield and lifetime measurements and pH titrations of the resultant bis-naphthalimide ligand elucidate a complex pattern of photophysical behaviour. Important differences arise from the inclusion of two fluorophores in the one probe and from the variation of triazole substitution pattern (dye at C4 vs. N1). Introducing a second fluorophore greatly extends fluorescence lifetimes, whereas the altered substitution pattern at the cyclam amines exerts a major influence on fluorescence output and metal binding. Crystal structures of two key zinc complexes evidence variations in triazole coordination that mirror the solution-phase behaviour of these systems.}, language = {en} }