@article{CzubaGradMjeldeetal.2011, author = {Czuba, Wojciech and Grad, Marek and Mjelde, Rolf and Guterch, Aleksander and Libak, Audun and Kr{\"u}ger, Frank and Murai, Yoshio and Schweitzer, Johannes}, title = {Continent-ocean-transition across a trans-tensional margin segment: off Bear Island, Barents Sea}, series = {Geophysical journal international}, volume = {184}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {IPY Project Grp}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2010.04873.x}, pages = {541 -- 554}, year = {2011}, abstract = {P>A 410 km long Ocean Bottom Seismometer profile spanning from the Bear Island, Barents Sea to oceanic crust formed along the Mohns Ridge has been modelled by use of ray-tracing with regard to observed P-waves. The northeastern part of the model represents typical continental crust, thinned from ca. 30 km thickness beneath the Bear Island to ca. 13 km within the Continent-Ocean-Transition. Between the Hornsund FZ and the Kn circle divide legga Fault, a 3-4 km thick sedimentary basin, dominantly of Permian/Carboniferous age, is modelled beneath the ca. 1.5 km thick layer of volcanics (Vestbakken Volcanic Province). The P-wave velocity in the 3-4 km thick lowermost continental crust is significantly higher than normal (ca. 7.5 km s-1). We interpret this layer as a mixture of mafic intrusions and continental crystalline blocks, dominantly related to the Paleocene-Early Eocene rifting event. The crystalline portion of the crust within the south-western part of the COT consists of a ca. 30 km wide and ca. 6 km thick high-velocity (7.3 km s-1) body. We interpret the body as a ridge of serpentinized peridotites. The magmatic portion of the ocean crust accreted along the Knipovich Ridge from continental break-up at ca. 35 Ma until ca. 20 Ma is 3-5 km thicker than normal. We interpret the increased magmatism as a passive response to the bending of this southernmost part of the Knipovich Ridge. The thickness of the magmatic portion of the crust formed along the Mohns Ridge at ca. 20 Ma decreases to ca. 3 km, which is normal for ultra slow spreading ridges.}, language = {en} } @article{ValesDiasRioetal.2014, author = {Vales, Dina and Dias, Nuno A. and Rio, Ines and Matias, Luis and Silveira, Graca and Madeira, Jose and Weber, Michael H. and Carrilho, Fernando and Haberland, Christian}, title = {Intraplate seismicity across the Cape Verde swell: A contribution from a temporary seismic network}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {636}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2014.09.014}, pages = {325 -- 337}, year = {2014}, abstract = {We present an analysis and characterization of the regional seismicity recorded by a temporary broadband seismic network deployed in the Cape Verde archipelago between November 2007 and September 2008. The detection of earthquakes was based on spectrograms, allowing the discrimination from low-frequency volcanic signals, resulting in 358 events of which 265 were located, the magnitudes usually being smaller than 3. For the location, a new 1-D P-velocity model was derived for the region showing a crust consistent with an oceanic crustal structure. The seismicity is located mostly offshore the westernmost and geologically youngest areas of the archipelago, near the islands of Santo Antao and Sao Vicente in the NW and Brava and Fogo in the SW. The SW cluster has a lower occurrence rate and corresponds to seismicity concentrated mainly along an alignment between Brava and the Cadamosto seamount presenting normal faulting mechanisms. The existence of the NW cluster, located offshore SW of Santo Antao, was so far unknown and concentrates around a recently recognized submarine cone field; this cluster presents focal depths extending from the crust to the upper mantle and suggests volcanic unrest No evident temporal behaviour could be perceived, although the events tend to occur in bursts of activity lasting a few days. In this recording period, no significant activity was detected at Fogo volcano, the most active volcanic edifice in Cape Verde. The seismicity characteristics point mainly to a volcanic origin. The correlation of the recorded seismicity with active volcanic structures agrees with the tendency for a westward migration of volcanic activity in the archipelago as indicated by the geologic record. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} }