@article{BanksNishiyamaHasebeetal.2011, author = {Banks, Jo Ann and Nishiyama, Tomoaki and Hasebe, Mitsuyasu and Bowman, John L. and Gribskov, Michael and dePamphilis, Claude and Albert, Victor A. and Aono, Naoki and Aoyama, Tsuyoshi and Ambrose, Barbara A. and Ashton, Neil W. and Axtell, Michael J. and Barker, Elizabeth and Barker, Michael S. and Bennetzen, Jeffrey L. and Bonawitz, Nicholas D. and Chapple, Clint and Cheng, Chaoyang and Correa, Luiz Gustavo Guedes and Dacre, Michael and DeBarry, Jeremy and Dreyer, Ingo and Elias, Marek and Engstrom, Eric M. and Estelle, Mark and Feng, Liang and Finet, Cedric and Floyd, Sandra K. and Frommer, Wolf B. and Fujita, Tomomichi and Gramzow, Lydia and Gutensohn, Michael and Harholt, Jesper and Hattori, Mitsuru and Heyl, Alexander and Hirai, Tadayoshi and Hiwatashi, Yuji and Ishikawa, Masaki and Iwata, Mineko and Karol, Kenneth G. and Koehler, Barbara and Kolukisaoglu, Uener and Kubo, Minoru and Kurata, Tetsuya and Lalonde, Sylvie and Li, Kejie and Li, Ying and Litt, Amy and Lyons, Eric and Manning, Gerard and Maruyama, Takeshi and Michael, Todd P. and Mikami, Koji and Miyazaki, Saori and Morinaga, Shin-ichi and Murata, Takashi and M{\"u}ller-R{\"o}ber, Bernd and Nelson, David R. and Obara, Mari and Oguri, Yasuko and Olmstead, Richard G. and Onodera, Naoko and Petersen, Bent Larsen and Pils, Birgit and Prigge, Michael and Rensing, Stefan A. and Mauricio Riano-Pachon, Diego and Roberts, Alison W. and Sato, Yoshikatsu and Scheller, Henrik Vibe and Schulz, Burkhard and Schulz, Christian and Shakirov, Eugene V. and Shibagaki, Nakako and Shinohara, Naoki and Shippen, Dorothy E. and Sorensen, Iben and Sotooka, Ryo and Sugimoto, Nagisa and Sugita, Mamoru and Sumikawa, Naomi and Tanurdzic, Milos and Theissen, Guenter and Ulvskov, Peter and Wakazuki, Sachiko and Weng, Jing-Ke and Willats, William W. G. T. and Wipf, Daniel and Wolf, Paul G. and Yang, Lixing and Zimmer, Andreas D. and Zhu, Qihui and Mitros, Therese and Hellsten, Uffe and Loque, Dominique and Otillar, Robert and Salamov, Asaf and Schmutz, Jeremy and Shapiro, Harris and Lindquist, Erika and Lucas, Susan and Rokhsar, Daniel and Grigoriev, Igor V.}, title = {The selaginella genome identifies genetic changes associated with the evolution of vascular plants}, series = {Science}, volume = {332}, journal = {Science}, number = {6032}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1203810}, pages = {960 -- 963}, year = {2011}, abstract = {Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.}, language = {en} } @article{BauerSchulzBrehmeretal.1995, author = {Bauer, J. and Schulz, Burkhard and Brehmer, Ludwig and B{\"o}tcher, M. and Jagdhold, U. and H{\"o}ppner, K. and Kulesch, A. and Dietzel, Birgit}, title = {Anwendung von Langmuir-Blodgett-Schichten als Resist f{\"u}r die Niederspannungs-Elektronenstrahl-Lithografie}, year = {1995}, language = {de} } @article{BhuvaneshMachatschekLysyakovaetal.2019, author = {Bhuvanesh, Thanga and Machatschek, Rainhard Gabriel and Lysyakova, Liudmila and Kratz, Karl and Schulz, Burkhard and Ma, Nan and Lendlein, Andreas}, title = {Collagen type-IV Langmuir and Langmuir-Schafer layers as model biointerfaces to direct stem cell adhesion}, series = {Biomedical materials : materials for tissue engineering and regenerative medicine}, volume = {14}, journal = {Biomedical materials : materials for tissue engineering and regenerative medicine}, number = {2}, publisher = {Inst. of Physics Publ.}, address = {Bristol}, issn = {1748-6041}, doi = {10.1088/1748-605X/aaf464}, pages = {17}, year = {2019}, abstract = {In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air-water (A-W) interface. Transferring these layers onto cell culture substrates using the Langmuir-Schafer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A-W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m(-1). Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m(-1) onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m(-1) on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses.}, language = {en} } @article{BhuvaneshSaretiaRochetal.2017, author = {Bhuvanesh, Thanga and Saretia, Shivam and Roch, Toralf and Sch{\"o}ne, Anne-Christin and Rottke, Falko O. and Kratz, Karl and Wang, Weiwei and Ma, Nan and Schulz, Burkhard and Lendlein, Andreas}, title = {Langmuir-Schaefer films of fibronectin as designed biointerfaces for culturing stem cells}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3910}, pages = {1305 -- 1311}, year = {2017}, abstract = {Glycoproteins adsorbing on an implant upon contact with body fluids can affect the biological response in vitro and in vivo, depending on the type and conformation of the adsorbed biomacromolecules. However, this process is poorly characterized and so far not controllable. Here, protein monolayers of high molecular cohesion with defined density are transferred onto polymeric substrates by the Langmuir-Schaefer (LS) technique and were compared with solution deposition (SO) method. It is hypothesized that on polydimethylsiloxane (PDMS), a substrate with poor cell adhesion capacity, the fibronectin (FN) layers generated by the LS and SO methods will differ in their organization, subsequently facilitating differential stem cell adhesion behavior. Indeed, atomic force microscopy visualization and immunofluorescence images indicated that organization of the FN layer immobilized on PDMS was uniform and homogeneous. In contrast, FN deposited by SO method was rather heterogeneous with appearance of structures resembling protein aggregates. Human mesenchymal stem cells showed reduced absolute numbers of adherent cells, and the vinculin expression seemed to be higher and more homogenously distributed after seeding on PDMS equipped with FN by LS in comparison with PDMS equipped with FN by SO. These divergent responses could be attributed to differences in the availability of adhesion molecule ligands such as the Arg-Gly-Asp (RGD) peptide sequence presented at the interface. The LS method allows to control the protein layer characteristics, including the thickness and the protein orientation or conformation, which can be harnessed to direct stem cell responses to defined outcomes, including migration and differentiation. Copyright (c) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{BrehmerDietzelFreydanketal.1995, author = {Brehmer, Ludwig and Dietzel, Birgit and Freydank, Anke-Christine and Katholy, Stefan and Knochenhauer, Gerald and Reiche, J{\"u}rgen and Schulz, Burkhard and Zetzsche, Thomas}, title = {Langmuir- und Langmuir-Blodgett-Filme amphiphiler Oxadiazole}, year = {1995}, language = {de} } @article{BrumaHamciucHamciucetal.1996, author = {Bruma, Maria and Hamciuc, Corneliu and Hamciuc, Elena and Mercer, Frank W. and Belomoina, Nataliya and Schulz, Burkhard}, title = {Heterocyclic polyamides containing hexafluoroisopropylidene groups}, year = {1996}, language = {en} } @article{BrumaHamciucHamciucetal.1997, author = {Bruma, Maria and Hamciuc, Corneliu and Hamciuc, Elena and Mercer, Frank W. and Belomoina, Nataliya and Schulz, Burkhard}, title = {Heterocyclic polyamides containing hexafluoroisopropylidene groups}, year = {1997}, abstract = {New heterocyclic polyamides have been synthesized by solution polycondensation of aromatic diamines containing phenyl- quinoxaline units with diacid chlorides having both imide and hexafluoroisopropylidene (6F) groups. These polymers are soluble in polar aprotic solvents, such as N-methylpyrrolidone (NMP) or N,N-dimethylformamide (DMF), and can be cast into flexible thin films from solutions. They show high thermooxidative stability with decomposition temperatures above 400°C and glass transition temperatures in the range of 225 - 300°C. The polymer films exhibit good chemical resistance towards deluted acids and good electrical insulating properties with dielectric constants in the range of 3.2 - 3.7.}, language = {en} } @article{BrumaHamciucSavaetal.1996, author = {Bruma, Maria and Hamciuc, Corneliu and Sava, Ion and Hamciuc, Elena and Mercer, Frank W. and Fritzsche, P. and Schulz, Burkhard}, title = {High temperature polyamides containing pendant imide groups}, year = {1996}, language = {en} } @article{BrumaHamciucSchulzetal.1999, author = {Bruma, Maria and Hamciuc, Elena and Schulz, Burkhard and K{\"o}pnick, Thomas and Stiller, Burkhard and Mercer, Frank W.}, title = {Synthesis of fluorinated poly(phenylquinoxaline-amide)s and study of thin films made therefrom}, year = {1999}, abstract = {A series of five fluorinated poly(phenylquinoxaline-amide)s were synthesized by a polycondensation reaction of a diacid chloride containing the hexafluoroisopropylidene (6F) group, namely 2,2-bis(p-chlorocarbonylphenyl)- hexafluoropropane, with various aromatic diamines incorporating two phenyl-substituted quinoxaline rings. These polymers were easily soluble in polar aprotic solvents such as N-methylpyrrolione (NMP), dimethylformamide (DMF), and tetrahydrofurane (THF), and showed a high thermal stability with decomposition temperatures above 400 °C and glass transition temperatures in the range of 260-290 Tg. Polymer solutions in NMP were processed into free-standing films that showed low dielectric constant values, in the range of 3.4-3.9, and good mechanical properties, with tensile strength in the range of 40-80 MPa and elongation to break in the range of 22-55\%. Very thin films, in the range of tens of nanometer, which were deposited onto silicon wafers exhibited very smooth surfaces, free of pinholes when studied by atomic force microscopy (AFM).}, language = {en} } @article{BrumaMercerSchulzetal.1994, author = {Bruma, Maria and Mercer, Frank W. and Schulz, Burkhard and Dietel, Reinhard and Fitch, J. and Cassidy, Peter}, title = {Study of crosslinking process in fluorinated poly(imide-amide)s containing pendant cyano groups}, year = {1994}, language = {en} }