@article{MunackKorupResentinietal.2014, author = {Munack, Henry and Korup, Oliver and Resentini, Alberto and Limonta, Mara and Garzanti, Eduardo and Bloethe, Jan H. and Scherler, Dirk and Wittmann, Hella and Kubik, Peter W.}, title = {Postglacial denudation of western Tibetan Plateau margin outpaced by long-term exhumation}, series = {Geological Society of America bulletin}, volume = {126}, journal = {Geological Society of America bulletin}, number = {11-12}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30979.1}, pages = {1580 -- 1594}, year = {2014}, abstract = {The Indus River, one of Asia's premier rivers, drains the western Tibetan Plateau and the Nanga Parbat syntaxis. These two areas juxtapose some of the lowest and highest topographic relief and commensurate denudation rates in the Himalaya-Tibet orogen, respectively, yet the spatial pattern of denudation rates upstream of the syntaxis remains largely unclear, as does the way in which major rivers drive headward incision into the Tibetan Plateau. We report a new inventory of Be-10-based basinwide denudation rates from 33 tributaries flanking the Indus River along a 320 km reach across the western Tibetan Plateau margin. We find that denudation rates of up to 110 mm k.y.(-1) in the Ladakh and Zanskar Ranges systematically decrease eastward to 10 mm k.y.(-1) toward the Tibetan Plateau. Independent results from bulk petrographic and heavy mineral analyses support this denudation gradient. Assuming that incision along the Indus exerts the base-level control on tributary denudation rates, our data show a systematic eastward decrease of landscape downwearing, reaching its minimum on the Tibetan Plateau. In contrast, denudation rates increase rapidly 150-200 km downstream of a distinct knick-point that marks the Tibetan Plateau margin in the Indus River longitudinal profile. We infer that any vigorous headward incision and any accompanying erosional waves into the interior of the plateau mostly concerned reaches well below this plateau margin. Moreover, reported long-term (>10(6) yr) exhumation rates from low-temperature chronometry of 0.1-0.75 mm yr(-1) consistently exceed our Be-10-derived denudation rates. With averaging time scales of 10(3)-10(4) yr for our denudation data, we report postglacial rates of downwearing in a tectonically idle landscape. To counterbalance this apparent mismatch, denudation rates must have been higher in the Quaternary during glacial-interglacial intervals.}, language = {en} }