@article{KoetzJagielskiKosmellaetal.2006, author = {Koetz, Joachim and Jagielski, Nicole and Kosmella, Sabine and Friedrich, Alwin and Kleinpeter, Erich}, title = {CdS nanocubes formed in phosphatidylcholin-based template phases}, volume = {288}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2006.01.013}, pages = {43 -- 1-3}, year = {2006}, abstract = {The paper is focused on the characterization and use of phosphatidylcholine (PC)-based inverse microemulsions as a template phase for the CdS nanoparticle formation. The optically clear, isotropic phase in the oil corner was identified as a "classical{\"o} water-in-oil microemulsion by means of NMR-diffusion measurements. Because of the very small dimensions of the water droplets, the isotropic phase shows a Newtonian-like flow behavior, and adequate amounts of bulk water cannot be detected by DSC. It is demonstrated that this w/o microemulsion can be used successfully as a nanoreactor for the formation of CdS nanoparticles with diameters of 4-5 nm. During the following process of solvent evaporation the individual small CdS nanoparticles aggregate to significant larger cubic nanoparticles, with an edge length of 2-40 nm, arranged in well-defined mosaic-like superstructures. In presence of SDS the nanocubes were stable up to 800 °C. It has to be stated here that polyelectrolytes prevent the formation of such well-ordered superstructures.}, language = {en} } @article{KleinpeterHolzberger2006, author = {Kleinpeter, Erich and Holzberger, Anja}, title = {Structure, intramolecular flexibility, and complexation of aza crown ethers to anions H2PO4- and HSO4- in nonprotic solvents}, series = {Tetrahedron}, volume = {62}, journal = {Tetrahedron}, number = {43}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-4020}, doi = {10.1016/j.tet.2006.07.074}, pages = {10237 -- 10247}, year = {2006}, abstract = {Both the structure and intramolecular flexibility of a series of aza crown ethers were studied by experimental NMR and theoretical molecular modeling. The stoichiometries of complexation to the anions H2PO4- and resulting complex stabilities were determined by experimental NMR (1H, 31P) titration and, in addition, the structure and mobility changes of the aza crown ethers upon complexation were also examined.}, language = {en} } @article{BalciKochKleinpeter2006, author = {Balci, Kubilay and Koch, Andreas and Kleinpeter, Erich}, title = {A comparative vibrational spectroscopic investigation of free mn-12S(2)O(2) and fn-12S(2)O(2) dithiacrown ethers based on DFT calculations}, issn = {0022-2860}, doi = {10.1016/j.molstruc.2005.10.048}, year = {2006}, abstract = {A successful assignment for the fundamental bands observed in the experimental IR spectra of mn-12S(2)O(2) and fn-12S(2)O(2) dithiacrown ethers was achieved by the aid of the density functional theory (DFT) based quantum mechanical calculations carried out at the 133LYP/6-31G(d) and B3LYP/6-31 + G(d) level of theory. Two different scaling approaches, '(i) scaled quantum mechanics force field (SQM FF) methodology', and (ii) the 'scaling frequencies with dual empirical scale factors', were used in order to fit the calculated harmonic frequencies to the experimental ones. Potential energy distribution (PED) calculations were carried out to define the internal coordinate contributions to each normal mode and to define the corresponding normal modes of the molecules. The effects of the conformational differences onto the IR active normal modes of the two isomeric molecules and their corresponding experimental frequencies were discussed in the light of the calculated spectral data.}, language = {en} } @article{ShainyanUshakovKochetal.2006, author = {Shainyan, Bagrat A. and Ushakov, Igor A. and Koch, Andreas and Kleinpeter, Erich}, title = {Stereodynamics of 1-(methylsulfonyl)-3,5-bis(trifluoromethylsulfonyl)-1,3,5-triazinane: Experimental and theoretical analysis}, doi = {10.1021/Jo061112x}, year = {2006}, abstract = {Dynamic NMR of 1-(methylsulfonyl)-3,5-bis(trifluoromethylsulfonyl)-1,3,5-triazinane reveals the existence of three conformers and two dynamic processes: ring inversion and rotation about the N-S bond, both processes having Delta G(double dagger) = 13.5 kcal/mol. An unprecedented large reverse Perlin effect (J(CHax) > J(CHeq)) was found experimentally and calculated theoretically.}, language = {en} } @article{SzatmariTothKochetal.2006, author = {Szatmari, Istvan and Toth, Diana and Koch, Andreas and Heydenreich, Matthias and Kleinpeter, Erich and Fulop, Ferenc}, title = {Study of the substituent-influenced anomeric effect in the ring-chain tautomerism of 1-alkyl-3-aryl-naphth[1,2- e][1,3]oxazines}, doi = {10.1002/ejoc.200600563}, year = {2006}, abstract = {The stabilities of the trans (B) and cis (C) tautomeric ring forms that are experimentally observed in the ring- chain tautomeric interconversion of 1-alkyl-3-aryl-2,3-dihydro-1H-naphth[1,2-e][1,3]oxazines has been investigated. Stability differences are explained by the analysis of the natural bond orbital results for the lone pairs of electrons that are on the heteroatoms in the oxazine ring system and by regression analysis of the calculated 13C NMR chemical shift values.}, language = {en} } @article{KlinkaBalentovaBernatetal.2006, author = {Klinka, Karel D. and Balentova, Eva and Bern{\´a}t, Juraj and Imrich, J{\´a}n and Vavrusov{\´a}, Martina and Pihlaja, Kalevi and Koch, Andreas and Kleinpeter, Erich and Kelling, Alexandra and Schilde, Uwe}, title = {Structural revision of products resulting from the reaction of methylhydrazine with acridin-9-yl isothiocyanate due to unexpected acridinyl migration And further reactions}, issn = {1551-7004}, year = {2006}, abstract = {The reaction of methyl acridin-9-ylthiosemicarbazide under basic conditions with methyl bromoacetate resulted in a 1,3-thiazolin-4-one structure as provided by X-ray crystallography. The structure forced a re-evaluation of the reactant methyl acridin-9-ylthiosemicarbazide, originally thought to be 2-methyl 4-acridin-9-ylthiosemicarbazide based on synthetic expectations, but which when examined by X-ray crystallography was found to be in fact the isomeric 2- methyl 1-acridin-9-ylthiosemicarbazide resulting from rearrangement via a spiro form which it is in equilibrium with in solution. The product resulting from reaction with methyl iodide was also studied and the previously reported semicarbazide produced by reaction with MNO was re-examined. In both cases, the 1,2 isomer rather than the 2,4 isomer was found to be present based on the sign of the 3JCH3,N11 coupling. Full characterization of the compounds was rendered by 1H, 13C, and 15N solution-state NMR, and in the solid state, by both 13C and 15N NMR.}, language = {en} } @article{Kleinpeter2006, author = {Kleinpeter, Erich}, title = {Push-pull alkenes : structure and pi-electron distribution}, doi = {10.2298/Jsc0601001k}, year = {2006}, abstract = {Push-pull alkenes are substituted alkenes with one or two electron-donating substituents on one end of C=C double bond and with one or two electron-accepting substituents at the other end. Allowance for pi-electron delocalization leads to the central C=C double bond becoming ever more polarized and with rising push-pull character, the pi-bond order of this double bond is reduced and, conversely, the corresponding pi-bond orders of the C-Don and C- Ace bonds are accordingly increased. This push-pull effect is of decisive influence on both the dynamic behavior and the chemical reactivity of this class of compounds and thus it is Of Considerable interest to both determine and to quantify the inherent push-pull effect. previously, the barriers to rotation about the C=C, C-Don and/or C-Acc partial double bonds (Delta G(not equal), as determined by dynamic NMR spectroscopy) or the C-13 chemical shift difference of the polarized C=C partial double bond (Delta delta(C=C)) were employed for this purpose, However, these parameters can have serious limitations, viz. the barriers can be immeasurable on the NMR timescale (either by being too high or too low-, heavily-biased conformers are present, etc.) or Delta delta(C=C) behaves in a non-additive manner with respect to the combination of the four substituents. Hence, a general parameter to quantify the push-pull effect is not yet available. Ab initio MO calculations on a collection of compounds, together with NBO analysis, provided valuable information on the structure, bond energies, electron occupancies and bonding/antibonding interactions. In addition to Delta G(C=C)(not equal) (either experimentally determined or theoretically calculated) and Delta delta(C=C), the bond length of the C=C partial double bond was also examined and it proved to be a reliable parameter to quantify the push-pull effect. Equally so, the quotient of the occupation numbers of the antibonding and bonding pi orbitals of the central C=C partial double bond ( pi*(C=C)/pi(C=C) ) could also be employed for this purpose}, language = {en} } @article{HoldtMuellerPotteretal.2006, author = {Holdt, Hans-J{\"u}rgen and M{\"u}ller, Holger and Potter, Matthias and Kelling, Alexandra and Schilde, Uwe and Starke, Ines and Heydenreich, Matthias and Kleinpeter, Erich}, title = {The first sandwich complex with an octa(thioether) coordination sphere : Bis(maleonitrile-tetrathia-12-crown- 4)silver(I)}, issn = {1434-1948}, doi = {10.1002/ejic.200501109}, year = {2006}, abstract = {The new tetrathiacrown ethers maleonitrile-tetrathia-12-crown-4 (mn12S(4)) and maleonitrile-tetrathia-13-crown- 4 (mn13S(4)) have been prepared and characterised by X-ray crystallographic analysis. These crown ethers form 2:1, 3:2 and 1: 1 complexes with AgY (Y = BF4, PF6). The crystal structures of [Ag(mn12S(4))(2)]BF4 (3a), [Ag(mn13S(4))(2)]BF4 (4a) and [Ag-2(mn13S(4))(3)](PF6)(2) (6b) have been determined. Compound 3a contains the centrosymmetric sandwich complex cation [Ag(mn12S(4))(2)](+) where each mn12S(4) ligand is coordinated to the Ag centre in an endo manner through all four S atoms. The 2:1 complex [Ag(mn12S(4))(2)](+) is the first sandwich complex with a tetrathiacrown ether and the first complex with an octa(thioether) coordination sphere. The crystal structure of compound 4a also reveals a 2:1 complex. This complex, [Ag(mnl3S(4))(2)](+), exhibits a half-sandwich structure. One mn13S(4) ligand coordinates to Ag+ by all four S donor atoms and the other 13S(4) crown by only one S atom. Compound 6b contains a dinuclear Ag complex. The Ag complexes 3a,b-8a,b were also studied by electrospray ionisation mass spectrometry. Collision-induced dissociation (CID) was used to compare the relative stability of 2:1 complexes [AgL2]+ and 1:1 complexes [AgL](+) (L = mn12S(4), mn13S(4)). The C-13 NMR chemical shifts of 2:1 and 1:1 Ag complexes and their corresponding free ligands were also estimated and compared. The free energy of the barrier of ring inversion (Delta G(double dagger)) for [Ag(mn12S(4))(2)](+) was determined to be 64 kJmol(-1).}, language = {en} } @article{HeydenreichKochKlodetal.2006, author = {Heydenreich, Matthias and Koch, Andreas and Klod, Sabrina and Szatmari, Istvan and Fulop, Ferenc and Kleinpeter, Erich}, title = {Synthesis and conformational analysis of naphth[1', 2':5,6][1,3]oxazino[3,2-c][1,3]benzoxazine and naphth[1', 2':5,6][1,3]oxazino[3,4-c][1,3]benzoxazine derivatives}, series = {Tetrahedron}, volume = {62}, journal = {Tetrahedron}, number = {48}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-4020}, doi = {10.1016/j.tet.2006.09.037}, pages = {11081 -- 11089}, year = {2006}, abstract = {A new functional group, the hydroxy group, was inserted into a Betti base by reaction with salicylaldehyde, and the naphthoxazine derivatives thus obtained were converted by ring-closure reactions with formaldehyde, acetaldehyde, propionaldehyde or phosgene to the corresponding naphth[1',2':5,6][1,3]oxazino[3,2-c][1,3]benzoxazine derivatives. Further, the conformational analysis of these polycyclic compounds by NMR spectroscopy and an accompanying molecular modelling are reported; especially, both quantitative anisotropic ring current effects of the aromatic moieties in these compounds and steric substituent effects were employed to determine the stereochemistry of the naphthoxazinobenzoxazine derivatives.}, language = {en} } @article{StarkeFuerstenbergMuelleretal.2006, author = {Starke, Ines and F{\"u}rstenberg, Sylvia and M{\"u}ller, Holger and Holdt, Hans-J{\"u}rgen and Kleinpeter, Erich}, title = {Electrospray mass spectrometric studies of the complexational behavior of maleonitrile thiacrown ethers with various metals}, doi = {10.1002/Rcm.2384}, year = {2006}, abstract = {Electrospray ionization was employed to study the mass spectrometric behavior of the maleonitrile tetrathiacrown ethers mn12S(4) (1) and mn13S(4) (2) and maleonitrile pentathiacrown ether mn15S(5) (3) and of their complexes with various metal salts (MX2, M=Pd, Pt, Ni, Co, Fe; X=Cl, CrCl3, Ni(BF4)(2), TIPF6 or Cd(NO3)(2)) and Cu(SO3CF3)(2). Both singly charged, [MXL](+) and [MXL2]+, and doubly charged complexes, [MLn](2+) (n = 2-5), were observed. The formation of the different complexes consisting of the transition metal ion, the counterion and the various crown ethers and their subsequent dissociation was also studied by collision-induced dissociation measurements which were also used to evaluate the relative stabilities of the complexes. It was found that the collisional voltages for the dissociation of the complexes were generally greater in the [MXL](+) complexes than in the corresponding [MXL2]+ complexes. Copyright (c) 2006 John Wiley \& Sons, Ltd}, language = {en} }