@article{ZuehlkeRiebeBeitzetal.2016, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Andreotti, Sandro and Reinert, Knut and Zenichowski, Karl and Diener, Marc}, title = {High-performance liquid chromatography with electrospray ionization ion mobility spectrometry: Characterization, data management, and applications}, series = {Journal of separation science}, volume = {39}, journal = {Journal of separation science}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1615-9306}, doi = {10.1002/jssc.201600749}, pages = {4756 -- 4764}, year = {2016}, abstract = {The combination of high-performance liquid chromatography and electrospray ionization ion mobility spectrometry facilitates the two-dimensional separation of complex mixtures in the retention and drift time plane. The ion mobility spectrometer presented here was optimized for flow rates customarily used in high-performance liquid chromatography between 100 and 1500 mu L/min. The characterization of the system with respect to such parameters as the peak capacity of each time dimension and of the 2D spectrum was carried out based on a separation of a pesticide mixture containing 24 substances. While the total ion current chromatogram is coarsely resolved, exhibiting coelutions for a number of compounds, all substances can be separately detected in the 2D plane due to the orthogonality of the separations in retention and drift dimensions. Another major advantage of the ion mobility detector is the identification of substances based on their characteristic mobilities. Electrospray ionization allows the detection of substances lacking a chromophore. As an example, the separation of a mixture of 18 amino acids is presented. A software built upon the free mass spectrometry package OpenMS was developed for processing the extensive 2D data. The different processing steps are implemented as separate modules which can be arranged in a graphic workflow facilitating automated processing of data.}, language = {en} } @article{ZuehlkeRiebeBeitzetal.2015, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Zenichowski, Karl and Diener, Marc and Linscheid, Michael W.}, title = {An electrospray ionization-ion mobility spectrometer as detector for high-performance liquid chromatography}, series = {European journal of mass spectrometry}, volume = {21}, journal = {European journal of mass spectrometry}, number = {3}, publisher = {WeltTrends}, address = {Sussex}, issn = {1469-0667}, doi = {10.1255/ejms.1367}, pages = {391 -- 402}, year = {2015}, abstract = {The application of electrospray ionization (ESI) ion mobility (IM) spectrometry on the detection end of a high-performance liquid chromatograph has been a subject of study for some time. So far, this method has been limited to low flow rates or has required splitting of the liquid flow. This work presents a novel concept of an ESI source facilitating the stable operation of the spectrometer at flow rates between 10 mu L min(-1) and 1500 mu L min(-1) without flow splitting, advancing the T-cylinder design developed by Kurnin and co-workers. Flow rates eight times faster than previously reported were achieved because of a more efficient dispersion of the liquid at increased electrospray voltages combined with nebulization by a sheath gas. Imaging revealed the spray operation to be in a rotationally symmetric multijet-mode. The novel ESI-IM spectrometer tolerates high water contents (<= 90\%) and electrolyte concentrations up to 10 mM, meeting another condition required of high-performance liquid chromatography (HPLC) detectors. Limits of detection of 50 nM for promazine in the positive mode and 1 mu M for 1,3-dinitrobenzene in the negative mode were established. Three mixtures of reduced complexity (five surfactants, four neuroleptics, and two isomers) were separated in the millisecond regime in stand-alone operation of the spectrometer. Separations of two more complex mixtures (five neuroleptics and 13 pesticides) demonstrate the application of the spectrometer as an HPLC detector. The examples illustrate the advantages of the spectrometer over the established diode array detector, in terms of additional IM separation of substances not fully separated in the retention time domain as well as identification of substances based on their characteristic IMs.}, language = {en} } @article{ZuehlkeSassRiebeetal.2017, author = {Z{\"u}hlke, Martin and Sass, Stephan and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Real-Time Reaction Monitoring of an Organic Multistep Reaction by Electrospray Ionization-Ion Mobility Spectrometry}, series = {ChemPlusChem}, volume = {82}, journal = {ChemPlusChem}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.201700296}, pages = {1266 -- 1273}, year = {2017}, abstract = {The capability of electrospray ionization (ESI)-ion mobility (IM) spectrometry for reaction monitoring is assessed both as a stand-alone real-time technique and in combination with HPLC. A three-step chemical reaction, consisting of a Williamson ether synthesis followed by a hydrogenation and an N-alkylation step, is chosen for demonstration. Intermediates and products are determined with a drift time to mass-per-charge correlation. Addition of an HPLC column to the setup increases the separation power and allows the determination of further species. Monitoring of the intensities of the various species over the reaction time allows the detection of the end of reaction, determination of the rate-limiting step, observation of the system response in discontinuous processes, and optimization of the mass ratios of the starting materials. However, charge competition in ESI influences the quantitative detection of substances in the reaction mixture. Therefore, two different methods are investigated, which allow the quantification and investigation of reaction kinetics. The first method is based on the pre-separation of the compounds on an HPLC column and their subsequent individual detection in the ESI-IM spectrometer. The second method involves an extended calibration procedure, which considers charge competition effects and facilitates nearly real-time quantification.}, language = {en} } @article{ZuehlkeZenichowskiRiebeetal.2017, author = {Z{\"u}hlke, Martin and Zenichowski, Karl and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Subambient pressure electrospray ionization ion mobility spectrometry}, series = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, volume = {20}, journal = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, publisher = {Springer}, address = {Heidelberg}, issn = {1435-6163}, doi = {10.1007/s12127-017-0215-x}, pages = {47 -- 56}, year = {2017}, abstract = {The pressure dependence of sheath gas assisted electrospray ionization (ESI) was investigated based on two complementary experimental setups, namely an ESI-ion mobility (IM) spectrometer and an ESI capillary - Faraday plate setup housed in an optically accessible vacuum chamber. The ESI-IM spectrometer is capable of working in the pressure range between 300 and 1000 mbar. Another aim was the assessment of the analytical capabilities of a subambient pressure ESI-IM spectrometer. The pressure dependence of ESI was characterized by imaging the electrospray and recording current-voltage (I-U) curves. Qualitatively different behavior was observed in both setups. While the current rises continuously with the voltage in the capillary-plate setup, a sharp increase of the current was measured in the IM spectrometer above a pressure-dependent threshold voltage. The different character can be attributed to the detection of different species in both experiments. In the capillary-plate experiment, a multitude of charged species are detected while only desolvated ions attribute to the IM spectrometer signal. This finding demonstrates the utility of IM spectrometry for the characterization of ESI, since in contrast to the capillary-plate setup, the release of ions from the electrospray droplets can be observed. The I-U curves change significantly with pressure. An important result is the reduction of the maximum current with decreasing pressure. The connected loss of ionization efficiency can be compensated by a more efficient transfer of ions in the IM spectrometer at increased E/N. Thus, similar limits of detection could be obtained at 500 mbar and 1 bar.}, language = {en} } @article{ZuelickeRagnettiNeumann1997, author = {Z{\"u}licke, Lutz and Ragnetti, Francesca and Neumann, Rainer}, title = {Ionized Van-der-Waals systems : structure and interactions}, year = {1997}, language = {en} } @article{ZuelickeRagnettiNeumannetal.1996, author = {Z{\"u}licke, Lutz and Ragnetti, Francesca and Neumann, Rainer and Zuhrt, Christian}, title = {Ionized Van-der-Waals systems : structure and interactions}, series = {Technical Report / Institute of Physical and Theoretical Chemistry, Potsdam}, volume = {1996, 01}, journal = {Technical Report / Institute of Physical and Theoretical Chemistry, Potsdam}, publisher = {Univ.}, address = {Potsdam}, pages = {46 S.}, year = {1996}, language = {en} } @article{ZuelickeZuhrtChapuisatetal.1994, author = {Z{\"u}licke, Lutz and Zuhrt, Christian and Chapuisat, Xavier and Saint-Esp{\´e}s, C{\´e}cile}, title = {Internal dynamics of simple floppy molecules}, year = {1994}, language = {en} } @article{OenerQuerebilloDavidetal.2018, author = {{\"O}ner, Ibrahim Halil and Querebillo, Christine Joy and David, Christin and Gernert, Ulrich and Walter, Carsten and Driess, Matthias and Leimk{\"u}hler, Silke and Ly, Khoa Hoang and Weidinger, Inez M.}, title = {High electromagnetic field enhancement of TiO2 nanotube electrodes}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {57}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201802597}, pages = {7225 -- 7229}, year = {2018}, abstract = {We present the fabrication of TiO2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochromeb(5) were observed upon covalent immobilization of the protein matrix on the TiO2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 degrees C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode.}, language = {en} } @article{OPUS4-15433, title = {Preparation of simple and mixed nickel and cobalt molybdates using hybrid precursors made from an ordered polymer matrix and inorganic salts}, year = {2004}, abstract = {The amphiphilic poly(ampholyte) poly(N,N-diallyl-N-hexylamine-alt-maleic acid), bearing simultaneously carboxylic acids, amines and hydrocarbon side chains, was used as a matrix to stabilize inorganic ion species (anionic as well as cationic) generated in aqueous solution from Ni(NO3)(2).6H(2)O, Co(NO3)(2).6H(2)O and (NH4)2MoO(4). Drying produces hybrid organic-inorganic blends which, due to the amphiphilicity of the copolymer, exhibit supramolecular organization in the bulk. Solid state studies show that up to two moles of metal cations (alone or together with metal anions) per repeat unit of the copolymer can be blended without loss of homogeneity in the hybrid material. A systematic screening permitted the determination of the optimal conditions for the preparation of homogeneous blends. Thermal treatment of the hybrid materials produces simple and mixed nickel and/or cobalt molybdates. The alpha- as well as the P- phase were obtained, and the mixed structures are solid solutions of simple NiMoO4 and CoMoO4}, language = {en} } @article{OPUS4-10587, title = {DFT-GIAO-NBO and 13C NMR study of the delta-syn-axial effect in 2,4-disubstituted adamantanes}, issn = {0749-1581}, doi = {10.1002/Mrc.2333}, year = {2008}, abstract = {Six groups of diastereomeric 2,4-disubstituted adamantanes were studied with DFT-GIAO-NBO (natural orbital analysis) methods. The calculated 13C chemical shifts reproduce well the experimental data. It was found that among all diastereomers, those bearing substituents in -syn-axial positions showed the largest overall deshielding, i.e. the sum of all 13C chemical shifts [;;(13C)] was the greatest and also had the highest delocalization contribution to the molecular energy evaluated with NBO. The higher delocalization energy is proposed to be the origin of the deshielding -syn-axial effect}, language = {en} }