@article{MaiBoyeYuanetal.2015, author = {Mai, Tobias and Boye, Susanne and Yuan, Jiayin and V{\"o}lkel, Antje and Gr{\"a}wert, Marlies and G{\"u}nter, Christina and Lederer, Albena and Taubert, Andreas}, title = {Poly(ethylene oxide)-based block copolymers with very high molecular weights for biomimetic calcium phosphate mineralization}, series = {RSC Advances : an international journal to further the chemical sciences}, journal = {RSC Advances : an international journal to further the chemical sciences}, number = {5}, publisher = {RSC Publishing}, address = {London}, issn = {2046-2069}, doi = {10.1039/c5ra20035k}, pages = {103494 -- 103505}, year = {2015}, abstract = {The present article is among the first reports on the effects of poly(ampholyte)s and poly(betaine)s on the biomimetic formation of calcium phosphate. We have synthesized a series of di- and triblock copolymers based on a non-ionic poly(ethylene oxide) block and several charged methacrylate monomers, 2-(trimethylammonium)ethyl methacrylate chloride, 2-((3-cyanopropyl)-dimethylammonium)ethyl methacrylate chloride, 3-sulfopropyl methacrylate potassium salt, and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide. The resulting copolymers are either positively charged, ampholytic, or betaine block copolymers. All the polymers have very high molecular weights of over 106 g mol-1. All polymers are water-soluble and show a strong effect on the precipitation and dissolution of calcium phosphate. The strongest effects are observed with triblock copolymers based on a large poly(ethylene oxide) middle block (nominal Mn = 100 000 g mol-1). Surprisingly, the data show that there is a need for positive charges in the polymers to exert tight control over mineralization and dissolution, but that the exact position of the charge in the polymer is of minor importance for both calcium phosphate precipitation and dissolution.}, language = {en} } @article{MardoukhiJeonMetzler2015, author = {Mardoukhi, Yousof and Jeon, Jae-Hyung and Metzler, Ralf}, title = {Geometry controlled anomalous diffusion in random fractal geometries}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, number = {17}, publisher = {Wiley-VCH Verl.}, address = {Weinheim}, issn = {1439-7641}, doi = {10.1039/c5cp03548a}, pages = {30134 -- 30147}, year = {2015}, abstract = {We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law BT� h with h o 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.}, language = {en} } @article{JahnBuschmannHille2015, author = {Jahn, Karolina and Buschmann, Volker and Hille, Carsten}, title = {Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells}, series = {Scientific Reports}, journal = {Scientific Reports}, number = {5}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep14334}, pages = {13}, year = {2015}, abstract = {In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.}, language = {en} } @article{Kroener2015, author = {Kr{\"o}ner, Dominik}, title = {Laser-driven electron dynamics for circular dichroism in mass spectrometry}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, volume = {29}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, number = {17}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/C5CP02193F}, pages = {19643 -- 19655}, year = {2015}, abstract = {The distinction of enantiomers is a key aspect of chemical analysis. In mass spectrometry the distinction of enantiomers has been achieved by ionizing the sample with circularly polarized laser pulses and comparing the ion yields for light of opposite handedness. While resonant excitation conditions are expected to be most efficient, they are not required for the detection of a circular dichroism (CD) in the ion yield. However, the prediction of the size and sign of the circular dichroism becomes challenging if non-resonant multiphoton excitations are used to ionize the sample. Employing femtosecond laser pulses to drive electron wavepacket dynamics based on ab initio calculations, we attempt to reveal underlying mechanisms that determine the CD under non-resonant excitation conditions. Simulations were done for (R)-1,2-propylene oxide, using time-dependent configuration interaction singles with perturbative doubles (TD-CIS(D)) and the aug-cc-pVTZ basis set. Interactions between the electric field and the electric dipole and quadrupole as well as between the magnetic field and the magnetic dipole were explicitly accounted for. The ion yield was determined by treating states above the ionization potential as either stationary or non-stationary with energy-dependent lifetimes based on an approved heuristic approach. The observed population dynamics do not allow for a simple interpretation, because of highly non-linear interactions. Still, the various transition pathways are governed by resonant enantiospecific n-photon excitation, with preferably high transition dipole moments, which eventually dominate the CD in the ionized population.}, language = {en} } @article{LohrenBornhorstGallaetal.2015, author = {Lohren, Hanna and Bornhorst, Julia and Galla, Hans-Joachim and Schwerdtle, Tanja}, title = {The blood-cerebrospinal fluid barrier}, series = {Metallomics : integrated biometal science}, volume = {10}, journal = {Metallomics : integrated biometal science}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/C5MT00171D}, pages = {1420 -- 1430}, year = {2015}, abstract = {Exposure to organic mercury compounds promotes primarily neurological effects. Although methylmercury is recognized as a potent neurotoxicant, its transfer into the central nervous system (CNS) is not fully evaluated. While methylmercury and thiomersal pass the blood-brain barrier, limited data are available regarding the second brain regulating interface, the blood-cerebrospinal fluid (CSF) barrier. This novel study was designed to investigate the effects of organic as well as inorganic mercury compounds on, and their transfer across, a porcine in vitro model of the blood-CSF barrier for the first time. The barrier system is significantly more sensitive towards organic Hg compounds as compared to inorganic compounds regarding the endpoints cytotoxicity and barrier integrity. Whereas there are low transfer rates from the blood side to the CSF side, our results strongly indicate an active transfer of the organic mercury compounds out of the CSF. These results are the first to demonstrate an efflux of organic mercury compounds regarding the CNS and provide a completely new approach in the understanding of mercury compounds specific transport.}, language = {en} } @article{MeyerRaberEbertetal.2015, author = {Meyer, S. and Raber, G. and Ebert, Franziska and Leffers, L. and M{\"u}ller, Sandra Marie and Taleshi, M. S. and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites}, series = {Toxicology research}, volume = {5}, journal = {Toxicology research}, number = {4}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2045-4538}, doi = {10.1039/c5tx00122f}, pages = {1289 -- 1296}, year = {2015}, abstract = {Arsenic-containing fatty acids are a group of fat-soluble arsenic species (arsenolipids) which are present in marine fish and other seafood. Recently, it has been shown that arsenic-containing hydrocarbons, another group of arsenolipids, exert toxicity in similar concentrations comparable to arsenite although the toxic modes of action differ. Hence, a risk assessment of arsenolipids is urgently needed. In this study the cellular toxicity of a saturated (AsFA 362) and an unsaturated (AsFA 388) arsenic-containing fatty acid and three of their proposed metabolites (DMAV, DMAPr and thio-DMAPr) were investigated in human liver cells (HepG2). Even though both arsenic-containing fatty acids were less toxic as compared to arsenic-containing hydrocarbons and arsenite, significant effects were observable at μM concentrations. DMAV causes effects in a similar concentration range and it could be seen that it is metabolised to its highly toxic thio analogue thio-DMAV in HepG2 cells. Nevertheless, DMAPr and thio-DMAPr did not exert any cytotoxicity. In summary, our data indicate that risks to human health related to the presence of arsenic-containing fatty acids in marine food cannot be excluded. This stresses the need for a full in vitro and in vivo toxicological characterisation of these arsenolipids.}, language = {en} } @article{KirchheckerTroegerMuellerBakeetal.2015, author = {Kirchhecker, Sarah and Tr{\"o}ger-M{\"u}ller, Steffen and Bake, Sebastian and Antonietti, Markus and Taubert, Andreas and Esposito, Davido}, title = {Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions}, series = {Green chemistry}, volume = {8}, journal = {Green chemistry}, number = {17}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9262}, doi = {10.1039/c5gc00913h}, pages = {4151 -- 4156}, year = {2015}, abstract = {Fully renewable pyridinium ionic liquids were synthesised via the hydrothermal decarboxylation of pyridinium zwitterions derived from furfural and amino acids in flow. The functionality of the resulting ionic liquid (IL) can be tuned by choice of different amino acids as well as different natural carboxylic acids as the counterions. A representative member of this new class of ionic liquids was successfully used for the synthesis of ionogels and as a solvent for the Heck coupling.}, language = {en} } @article{BartoloniJinMarcaidaetal.2015, author = {Bartoloni, Marco and Jin, Xian and Marcaida, Maria Jos{\´e} and Banha, Joao and Dibonaventura, Ivan and Bongoni, Swathi and Bartho, Kathrin and Gr{\"a}bner, Olivia and Sefkow, Michael and Darbre, Tamis and Reymond, Jean-Louis}, title = {Bridged bicyclic peptides as potential drug scaffolds}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2041-6520}, doi = {10.1039/C5SC01699A}, pages = {5473 -- 5490}, year = {2015}, abstract = {Double cyclization of short linear peptides obtained by solid phase peptide synthesis was used to prepare bridged bicyclic peptides (BBPs) corresponding to the topology of bridged bicyclic alkanes such as norbornane. Diastereomeric norbornapeptides were investigated by 1H-NMR, X-ray crystallography and CD spectroscopy and found to represent rigid globular scaffolds stabilized by intramolecular backbone hydrogen bonds with scaffold geometries determined by the chirality of amino acid residues and sharing structural features of β-turns and α-helices. Proteome profiling by capture compound mass spectrometry (CCMS) led to the discovery of the norbornapeptide 27c binding selectively to calmodulin as an example of a BBP protein binder. This and other BBPs showed high stability towards proteolytic degradation in serum.}, language = {en} } @article{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, volume = {27}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, number = {17}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp03093e}, pages = {18079 -- 18086}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10-18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @article{GuhaWarsinkeTientcheuetal.2015, author = {Guha, S. and Warsinke, A. and Tientcheu, Ch. M. and Schmalz, K. and Meliani, C. and Wenger, Ch.}, title = {Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor}, series = {The analyst : the analytical journal of the Royal Society of Chemistry}, volume = {9}, journal = {The analyst : the analytical journal of the Royal Society of Chemistry}, number = {140}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0003-2654}, doi = {10.1039/c4an02194k}, pages = {3019 -- 3027}, year = {2015}, abstract = {In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88-880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm2 reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process.}, language = {en} }