@misc{RohrmannHeermanceKappetal.2015, author = {Rohrmann, Alexander and Heermance, Richard and Kapp, Paul and Cai, Fulong}, title = {Wind as the primary driver of erosion in the Qaidam Basin, China (vol 374, pg 1, 2013)}, series = {Earth \& planetary science letters}, volume = {432}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2015.10.011}, pages = {501 -- 501}, year = {2015}, language = {en} } @misc{ReimoldSchulzHoffmannetal.2016, author = {Reimold, W. U. and Schulz, Toni and Hoffmann, M. and Wannek, Dshamilja and Hauser, N. and van Acken, David and Luguet, A.}, title = {VREDEFORT GRANOPHYRE GENESIS: CLUES FROM RE-OS ISOTOPE DATA}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {51}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1086-9379}, pages = {A533 -- A533}, year = {2016}, language = {en} } @misc{KneisAbonBronstertetal.2016, author = {Kneis, David and Abon, Catherine Cristobal and Bronstert, Axel and Heistermann, Maik}, title = {Verification of short-term runoff forecasts for a small Philippine basin (Marikina)}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {62}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0262-6667}, doi = {10.1080/02626667.2016.1183773}, pages = {205 -- 216}, year = {2016}, abstract = {Storm runoff from the Marikina River Basin frequently causes flood events in the Philippine capital region Metro Manila. This paper presents and evaluates a system to predict short-term runoff from the upper part of that basin (380km(2)). It was designed as a possible component of an operational warning system yet to be installed. For the purpose of forecast verification, hindcasts of streamflow were generated for a period of 15 months with a time-continuous, conceptual hydrological model. The latter was fed with real-time observations of rainfall. Both ground observations and weather radar data were tested as rainfall forcings. The radar-based precipitation estimates clearly outperformed the raingauge-based estimates in the hydrological verification. Nevertheless, the quality of the deterministic short-term runoff forecasts was found to be limited. For the radar-based predictions, the reduction of variance for lead times of 1, 2 and 3hours was 0.61, 0.62 and 0.54, respectively, with reference to a no-forecast scenario, i.e. persistence. The probability of detection for major increases in streamflow was typically less than 0.5. Given the significance of flood events in the Marikina Basin, more effort needs to be put into the reduction of forecast errors and the quantification of remaining uncertainties.}, language = {en} } @misc{SmithBookhagen2018, author = {Smith, Taylor and Bookhagen, Bodo}, title = {Using passive microwave data to understand spatio-temporal trends and dynamics in snow-water storage in High Mountain Asia}, series = {active and passive microwave remote sensing for environmental monitoring II}, volume = {10788}, journal = {active and passive microwave remote sensing for environmental monitoring II}, publisher = {SPIE-INT Soc Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-2160-2}, issn = {0277-786X}, doi = {10.1117/12.2323827}, pages = {8}, year = {2018}, abstract = {High Mountain Asia provides water for more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow - the vast majority of which is not monitored by sparse weather networks. We leverage passive microwave data from the SSMI series of satellites (SSMI, SSMI/S, 1987-2016), reprocessed to 3.125 km resolution, to examine trends in the volume and spatial distribution of snow-water equivalent (SWE) in the Indus Basin. We find that the majority of the Indus has seen an increase in snow-water storage. There exists a strong elevation-trend relationship, where high-elevation zones have more positive SWE trends. Negative trends are confined to the Himalayan foreland and deeply-incised valleys which run into the Upper Indus. This implies a temperature-dependent cutoff below which precipitation increases are not translated into increased SWE. Earlier snowmelt or a higher percentage of liquid precipitation could both explain this cutoff.(1) Earlier work 2 found a negative snow-water storage trend for the entire Indus catchment over the time period 1987-2009 (-4 x 10(-3) mm/yr). In this study based on an additional seven years of data, the average trend reverses to 1.4 x 10(-3). This implies that the decade since the mid-2000s was likely wetter, and positively impacted long-term SWE trends. This conclusion is supported by an analysis of snowmelt onset and end dates which found that while long-term trends are negative, more recent (since 2005) trends are positive (moving later in the year).(3)}, language = {en} } @misc{GudipudiRybskiLuedekeetal.2019, author = {Gudipudi, Venkata Ramana and Rybski, Diego and L{\"u}deke, Matthias K. B. and Kropp, J{\"u}rgen}, title = {Urban emission scaling - Research insights and a way forward}, series = {Environment and Planning B: Urban Analytics and City Science}, volume = {46}, journal = {Environment and Planning B: Urban Analytics and City Science}, number = {9}, publisher = {Sage Publ.}, address = {London}, issn = {2399-8083}, doi = {10.1177/2399808319825867}, pages = {1678 -- 1683}, year = {2019}, language = {en} } @misc{LopezTarazonByrnevanderPerk2017, author = {Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Byrne, Patrick and van der Perk, Marcel}, title = {Transfer of Sediments and Contaminants in Catchments and Rivers Preface}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {17}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-017-1810-5}, pages = {2577 -- 2581}, year = {2017}, language = {en} } @misc{GeissmanJolivetRusmoreetal.2019, author = {Geissman, John and Jolivet, Laurent and Rusmore, Margi and Niemi, Nathan and Schildgen, Taylor F.}, title = {Thank you to our 2018 peer reviewers}, series = {Tectonics}, volume = {38}, journal = {Tectonics}, number = {4}, publisher = {Hoboken}, address = {Wiley}, issn = {0278-7407}, doi = {10.1029/2019TC005595}, pages = {1159 -- 1163}, year = {2019}, abstract = {An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published are as accurate, valuable, and clearly communicated. The over 216 papers published in Tectonics in 2018 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2018, the over 443 papers submitted to Tectonics were the beneficiaries of more than 1,010 reviews provided by 668 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible.}, language = {en} } @misc{GeissmanJolivetNiemietal.2018, author = {Geissman, John and Jolivet, Laurent and Niemi, Nathan and Schildgen, Taylor F.}, title = {Thank you to our 2017 Peer Reviewers}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC005194}, pages = {2272 -- 2277}, year = {2018}, abstract = {An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published as accurate, valuable, and clearly communicated. The over 152 papers published in Tectonics in 2017 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2017, the over 423 papers submitted to Tectonics were the beneficiaries of more than 786 reviews provided by 562 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible.}, language = {en} } @misc{Motagh2007, author = {Motagh, Mahdi}, title = {Tectonic and non-tectonic deformation monitoringg using satellite radar interferometry}, address = {Potsdam}, pages = {XI, 88 S. : graph. Darst.}, year = {2007}, language = {en} } @misc{WalzGretRegameyLavorel2016, author = {Walz, Ariane and Gret-Regamey, Adrienne and Lavorel, Sandra}, title = {Social valuation of ecosystem services in mountain regions}, series = {Regional environmental change}, volume = {16}, journal = {Regional environmental change}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-016-1028-x}, pages = {1985 -- 1987}, year = {2016}, language = {en} }