@misc{ArniCaliendoKuennetal.2014, author = {Arni, Patrick and Caliendo, Marco and K{\"u}nn, Steffen and Zimmermann, Klaus F.}, title = {The IZA evaluation dataset survey}, series = {Postprints der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {122}, issn = {1867-5808}, doi = {10.25932/publishup-43520}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435204}, pages = {22}, year = {2014}, abstract = {This reference paper describes the sampling and contents of the IZA Evaluation Dataset Survey and outlines its vast potential for research in labor economics. The data have been part of a unique IZA project to connect administrative data from the German Federal Employment Agency with innovative survey data to study the out-mobility of individuals to work. This study makes the survey available to the research community as a Scientific Use File by explaining the development, structure, and access to the data. Furthermore, it also summarizes previous findings with the survey data.}, language = {en} } @misc{JeonChechkinMetzler2014, author = {Jeon, Jae-Hyung and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76302}, pages = {15811 -- 15817}, year = {2014}, abstract = {Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used.}, language = {en} }