@misc{ZeuschnerMatternPudelletal.2021, author = {Zeuschner, Steffen Peer and Mattern, Maximilian and Pudell, Jan-Etienne and Reppert, Alexander von and R{\"o}ssle, Matthias and Leitenberger, Wolfram and Schwarzkopf, Jutta and Boschker, Jos and Herzog, Marc and Bargheer, Matias}, title = {Reciprocal space slicing}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1137}, issn = {1866-8372}, doi = {10.25932/publishup-49976}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-499761}, pages = {13}, year = {2021}, abstract = {An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2.}, language = {en} } @misc{ZeuschnerParpiievPezeriletal.2019, author = {Zeuschner, Steffen Peer and Parpiiev, Tymur and Pezeril, Thomas and Hillion, Arnaud and Dumesnil, Karine and Anane, Abdelmadjid and Pudell, Jan-Etienne and Willig, Lisa and R{\"o}ssle, Matthias and Herzog, Marc and Reppert, Alexander von and Bargheer, Matias}, title = {Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-naturwissenschaftliche Reihe}, number = {706}, issn = {1866-8372}, doi = {10.25932/publishup-42845}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428457}, pages = {9}, year = {2019}, abstract = {We combine ultrafast X-ray diffraction (UXRD) and time-resolved Magneto-Optical Kerr Effect (MOKE) measurements to monitor the strain pulses in laser-excited TbFe2/Nb heterostructures. Spatial separation of the Nb detection layer from the laser excitation region allows for a background-free characterization of the laser-generated strain pulses. We clearly observe symmetric bipolar strain pulses if the excited TbFe2 surface terminates the sample and a decomposition of the strain wavepacket into an asymmetric bipolar and a unipolar pulse, if a SiO2 glass capping layer covers the excited TbFe2 layer. The inverse magnetostriction of the temporally separated unipolar strain pulses in this sample leads to a MOKE signal that linearly depends on the strain pulse amplitude measured through UXRD. Linear chain model simulations accurately predict the timing and shape of UXRD and MOKE signals that are caused by the strain reflections from multiple interfaces in the heterostructure.}, language = {en} } @misc{PavlenkoSanderMitzscherlingetal.2016, author = {Pavlenko, Elena S. and Sander, Mathias and Mitzscherling, Steffen and Pudell, Jan-Etienne and Zamponi, Flavio and R{\"o}ssle, Matthias and Bojahr, Andre and Bargheer, Matias}, title = {Azobenzene - functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers}, volume = {8}, doi = {10.1039/C6NR01448H}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101996}, pages = {13297 -- 13302}, year = {2016}, abstract = {We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain ε ∼ 5 × 10-4 is calibrated by ultrafast X-ray diffraction.}, language = {en} }