@article{MeierBraunsGrimmetal.2022, author = {Meier, Laura and Brauns, Mario and Grimm, Volker and Weitere, Markus and Frank, Karin}, title = {MASTIFF: a mechanistic model for cross-scale analyses of the functioning of multiple stressed riverine ecosystems}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {470}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2022.110007}, pages = {15}, year = {2022}, abstract = {Riverine ecosystems provide various ecosystem services. One of these services is the biological control of eutrophication by grazing macroinvertebrates. However, riverine ecosystems are subject to numerous stressors that affect community structure, functions, and stability properties. To manage rivers in response to these stressors, a better understanding of the ecological functions underlying services is needed. This requires consideration of local and regional processes, which requires a metacommunity approach that links local food webs through drift and dispersal. This takes into account long-distance interactions that can compensate for local effects of stressors. Our modular model MASTIFF (Multiple Aquatic STressors In Flowing Food webs) is stage-structured, spatially explicit, and includes coupled food webs consisting of benthic resource-consumer interactions between biofilm and three competing macroinvertebrate functional types. River segments are unidirectionally connected through organismal drift and bidirectionally connected through dispersal. Climate and land use stressors along the river can be accounted for. Biocontrol of biofilm eutrophication is used as an exemplary functional indicator. We present the model and the underlying considerations, and show in an exemplary application that explicit consideration of drift and dispersal is essential for understanding the spatiotemporal biocontrol of eutrophication. The combination of drift and dispersal reduced eutrophication events. While dispersal events were linked to specific periods in the species life cycles and therefore had limited potential to control, drift was ubiquitous and thus responded more readily to changing habitat conditions. This indicates that drift is an important factor for coping with stress situations. Finally, we outline and discuss the potential and possibilities of MASTIFF as a tool for mechanistic, cross-scale analyses of multiple stressors to advance knowledge of riverine ecosystem functioning.}, language = {en} } @article{EsfahaniGholamiOhrnberger2020, author = {Esfahani, Reza Dokht Dolatabadi and Gholami, Ali and Ohrnberger, Matthias}, title = {An inexact augmented Lagrangian method for nonlinear dispersion-curve inversion using Dix-type global linear approximation}, series = {Geophysics : a journal of general and applied geophysics}, volume = {85}, journal = {Geophysics : a journal of general and applied geophysics}, number = {3}, publisher = {GeoScienceWorld}, address = {Tulsa, Okla.}, issn = {0016-8033}, doi = {10.1190/geo2019-0717.1}, pages = {EN77 -- EN85}, year = {2020}, abstract = {Dispersion-curve inversion of Rayleigh waves to infer subsurface shear-wave velocity is a long-standing problem in seismology. Due to nonlinearity and ill-posedness, sophisticated regularization techniques are required to solve the problem for a stable velocity model. We have formulated the problem as a minimization problem with nonlinear operator constraint and then solve it by using an inexact augmented Lagrangian method, taking advantage of the Haney-Tsai Dix-type relation (a global linear approximation of the nonlinear forward operator). This replaces the original regularized nonlinear problem with iterative minimization of a more tractable regularized linear problem followed by a nonlinear update of the phase velocity (data) in which the update can be performed accurately with any forward modeling engine, for example, the finite-element method. The algorithm allows discretizing the medium with thin layers (for the finite-element method) and thus omitting the layer thicknesses from the unknowns and also allows incorporating arbitrary regularizations to shape the desired velocity model. In this research, we use total variation regularization to retrieve the shear-wave velocity model. We use two synthetic and two real data examples to illustrate the performance of the inversion algorithm with total variation regularization. We find that the method is fast and stable, and it converges to the solution of the original nonlinear problem.}, language = {en} } @article{HornBecherJohstetal.2020, author = {Horn, Juliane and Becher, Matthias A. and Johst, Karin and Kennedy, Peter J. and Osborne, Juliet L. and Radchuk, Viktoriia and Grimm, Volker}, title = {Honey bee colony performance affected by crop diversity and farmland structure}, series = {Ecological applications}, volume = {31}, journal = {Ecological applications}, number = {1}, publisher = {Wiley Periodicals LLC}, address = {Washington DC}, issn = {1939-5582}, doi = {10.1002/eap.2216}, pages = {1 -- 22}, year = {2020}, abstract = {Forage availability has been suggested as one driver of the observed decline in honey bees. However, little is known about the effects of its spatiotemporal variation on colony success. We present a modeling framework for assessing honey bee colony viability in cropping systems. Based on two real farmland structures, we developed a landscape generator to design cropping systems varying in crop species identity, diversity, and relative abundance. The landscape scenarios generated were evaluated using the existing honey bee colony model BEEHAVE, which links foraging to in-hive dynamics. We thereby explored how different cropping systems determine spatiotemporal forage availability and, in turn, honey bee colony viability (e.g., time to extinction, TTE) and resilience (indicated by, e.g., brood mortality). To assess overall colony viability, we developed metrics,P(H)andP(P,)which quantified how much nectar and pollen provided by a cropping system per year was converted into a colony's adult worker population. Both crop species identity and diversity determined the temporal continuity in nectar and pollen supply and thus colony viability. Overall farmland structure and relative crop abundance were less important, but details mattered. For monocultures and for four-crop species systems composed of cereals, oilseed rape, maize, and sunflower,P(H)andP(P)were below the viability threshold. Such cropping systems showed frequent, badly timed, and prolonged forage gaps leading to detrimental cascading effects on life stages and in-hive work force, which critically reduced colony resilience. Four-crop systems composed of rye-grass-dandelion pasture, trefoil-grass pasture, sunflower, and phacelia ensured continuous nectar and pollen supply resulting in TTE > 5 yr, andP(H)(269.5 kg) andP(P)(108 kg) being above viability thresholds for 5 yr. Overall, trefoil-grass pasture, oilseed rape, buckwheat, and phacelia improved the temporal continuity in forage supply and colony's viability. Our results are hypothetical as they are obtained from simplified landscape settings, but they nevertheless match empirical observations, in particular the viability threshold. Our framework can be used to assess the effects of cropping systems on honey bee viability and to develop land-use strategies that help maintain pollination services by avoiding prolonged and badly timed forage gaps.}, language = {en} } @misc{HornBecherJohstetal.2020, author = {Horn, Juliane and Becher, Matthias A. and Johst, Karin and Kennedy, Peter J. and Osborne, Juliet L. and Radchuk, Viktoriia and Grimm, Volker}, title = {Honey bee colony performance affected by crop diversity and farmland structure}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-55694}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-556943}, pages = {24}, year = {2020}, abstract = {Forage availability has been suggested as one driver of the observed decline in honey bees. However, little is known about the effects of its spatiotemporal variation on colony success. We present a modeling framework for assessing honey bee colony viability in cropping systems. Based on two real farmland structures, we developed a landscape generator to design cropping systems varying in crop species identity, diversity, and relative abundance. The landscape scenarios generated were evaluated using the existing honey bee colony model BEEHAVE, which links foraging to in-hive dynamics. We thereby explored how different cropping systems determine spatiotemporal forage availability and, in turn, honey bee colony viability (e.g., time to extinction, TTE) and resilience (indicated by, e.g., brood mortality). To assess overall colony viability, we developed metrics,P(H)andP(P,)which quantified how much nectar and pollen provided by a cropping system per year was converted into a colony's adult worker population. Both crop species identity and diversity determined the temporal continuity in nectar and pollen supply and thus colony viability. Overall farmland structure and relative crop abundance were less important, but details mattered. For monocultures and for four-crop species systems composed of cereals, oilseed rape, maize, and sunflower,P(H)andP(P)were below the viability threshold. Such cropping systems showed frequent, badly timed, and prolonged forage gaps leading to detrimental cascading effects on life stages and in-hive work force, which critically reduced colony resilience. Four-crop systems composed of rye-grass-dandelion pasture, trefoil-grass pasture, sunflower, and phacelia ensured continuous nectar and pollen supply resulting in TTE > 5 yr, andP(H)(269.5 kg) andP(P)(108 kg) being above viability thresholds for 5 yr. Overall, trefoil-grass pasture, oilseed rape, buckwheat, and phacelia improved the temporal continuity in forage supply and colony's viability. Our results are hypothetical as they are obtained from simplified landscape settings, but they nevertheless match empirical observations, in particular the viability threshold. Our framework can be used to assess the effects of cropping systems on honey bee viability and to develop land-use strategies that help maintain pollination services by avoiding prolonged and badly timed forage gaps.}, language = {en} } @article{AbramovaBatzelModesti2022, author = {Abramova, Olga and Batzel, Katharina and Modesti, Daniela}, title = {Collective response to the health crisis among German Twitter users}, series = {International Journal of Information Management Data Insights}, volume = {2}, journal = {International Journal of Information Management Data Insights}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2667-0968}, doi = {10.1016/j.jjimei.2022.100126}, pages = {13}, year = {2022}, abstract = {We used structural topic modeling to analyze over 800,000 German tweets about COVID-19 to answer the questions: What patterns emerge in tweets as a response to a health crisis? And how do topics discussed change over time? The study leans on the goals associated with the health information seeking (GAINS) model, discerning whether a post aims at tackling and eliminating the problem (i.e., problem-focused) or managing the emotions (i.e., emotion-focused); whether it strives to maximize positive outcomes (promotion focus) or to minimize negative outcomes (prevention focus). The findings indicate four clusters salient in public reactions: 1) "Understanding" (problem-promotion); 2) "Action planning" (problem-prevention); 3) "Hope" (emotion-promotion) and 4) "Reassurance" (emotion-prevention). Public communication is volatile over time, and a shift is evidenced from self-centered to community-centered topics within 4.5 weeks. Our study illustrates social media text mining's potential to quickly and efficiently extract public opinions and reactions. Monitoring fears and trending topics enable policymakers to rapidly respond to deviant behavior, like resistive attitudes toward containment measures or deteriorating physical health. Healthcare workers can use the insights to provide mental health services for battling anxiety or extensive loneliness from staying home.}, language = {en} } @article{OmarovaYerezhepAldiyarovetal.2022, author = {Omarova, Zhansaya and Yerezhep, Darkhan and Aldiyarov, Abdurakhman and Tokmoldin, Nurlan}, title = {In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells}, series = {Crystals}, volume = {12}, journal = {Crystals}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2073-4352}, doi = {10.3390/cryst12050699}, pages = {17}, year = {2022}, abstract = {Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95\%, FF = 84.05\%, V-OC = 1.02 V and J(SC) = 32.60 mA/cm(2), providing optimal performance and enhanced resistance to defects.}, language = {en} } @phdthesis{MalemShinitski2023, author = {Malem-Shinitski, Noa}, title = {Bayesian inference and modeling for point processes with applications from neuronal activity to scene viewing}, doi = {10.25932/publishup-61495}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-614952}, school = {Universit{\"a}t Potsdam}, pages = {vii, 129}, year = {2023}, abstract = {Point processes are a common methodology to model sets of events. From earthquakes to social media posts, from the arrival times of neuronal spikes to the timing of crimes, from stock prices to disease spreading -- these phenomena can be reduced to the occurrences of events concentrated in points. Often, these events happen one after the other defining a time--series. Models of point processes can be used to deepen our understanding of such events and for classification and prediction. Such models include an underlying random process that generates the events. This work uses Bayesian methodology to infer the underlying generative process from observed data. Our contribution is twofold -- we develop new models and new inference methods for these processes. We propose a model that extends the family of point processes where the occurrence of an event depends on the previous events. This family is known as Hawkes processes. Whereas in most existing models of such processes, past events are assumed to have only an excitatory effect on future events, we focus on the newly developed nonlinear Hawkes process, where past events could have excitatory and inhibitory effects. After defining the model, we present its inference method and apply it to data from different fields, among others, to neuronal activity. The second model described in the thesis concerns a specific instance of point processes --- the decision process underlying human gaze control. This process results in a series of fixated locations in an image. We developed a new model to describe this process, motivated by the known Exploration--Exploitation dilemma. Alongside the model, we present a Bayesian inference algorithm to infer the model parameters. Remaining in the realm of human scene viewing, we identify the lack of best practices for Bayesian inference in this field. We survey four popular algorithms and compare their performances for parameter inference in two scan path models. The novel models and inference algorithms presented in this dissertation enrich the understanding of point process data and allow us to uncover meaningful insights.}, language = {en} } @phdthesis{Stoltnow2023, author = {Stoltnow, Malte}, title = {Magmatic-hydrothermal processes along the porphyry to epithermal transition}, doi = {10.25932/publishup-61140}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611402}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 132}, year = {2023}, abstract = {Magmatic-hydrothermal systems form a variety of ore deposits at different proximities to upper-crustal hydrous magma chambers, ranging from greisenization in the roof zone of the intrusion, porphyry mineralization at intermediate depths to epithermal vein deposits near the surface. The physical transport processes and chemical precipitation mechanisms vary between deposit types and are often still debated. The majority of magmatic-hydrothermal ore deposits are located along the Pacific Ring of Fire, whose eastern part is characterized by the Mesozoic to Cenozoic orogenic belts of the western North and South Americas, namely the American Cordillera. Major magmatic-hydrothermal ore deposits along the American Cordillera include (i) porphyry Cu(-Mo-Au) deposits (along the western cordilleras of Mexico, the western U.S., Canada, Chile, Peru, and Argentina); (ii) Climax- (and sub-) type Mo deposits (Colorado Mineral Belt and northern New Mexico); and (iii) porphyry and IS-type epithermal Sn(-W-Ag) deposits of the Central Andean Tin Belt (Bolivia, Peru and northern Argentina). The individual studies presented in this thesis primarily focus on the formation of different styles of mineralization located at different proximities to the intrusion in magmatic-hydrothermal systems along the American Cordillera. This includes (i) two individual geochemical studies on the Sweet Home Mine in the Colorado Mineral Belt (potential endmember of peripheral Climax-type mineralization); (ii) one numerical modeling study setup in a generic porphyry Cu-environment; and (iii) a numerical modeling study on the Central Andean Tin Belt-type Pirquitas Mine in NW Argentina. Microthermometric data of fluid inclusions trapped in greisen quartz and fluorite from the Sweet Home Mine (Detroit City Portal) suggest that the early-stage mineralization precipitated from low- to medium-salinity (1.5-11.5 wt.\% equiv. NaCl), CO2-bearing fluids at temperatures between 360 and 415°C and at depths of at least 3.5 km. Stable isotope and noble gas isotope data indicate that greisen formation and base metal mineralization at the Sweet Home Mine was related to fluids of different origins. Early magmatic fluids were the principal source for mantle-derived volatiles (CO2, H2S/SO2, noble gases), which subsequently mixed with significant amounts of heated meteoric water. Mixing of magmatic fluids with meteoric water is constrained by δ2Hw-δ18Ow relationships of fluid inclusions. The deep hydrothermal mineralization at the Sweet Home Mine shows features similar to deep hydrothermal vein mineralization at Climax-type Mo deposits or on their periphery. This suggests that fluid migration and the deposition of ore and gangue minerals in the Sweet Home Mine was triggered by a deep-seated magmatic intrusion. The second study on the Sweet Home Mine presents Re-Os molybdenite ages of 65.86±0.30 Ma from a Mo-mineralized major normal fault, namely the Contact Structure, and multimineral Rb-Sr isochron ages of 26.26±0.38 Ma and 25.3±3.0 Ma from gangue minerals in greisen assemblages. The age data imply that mineralization at the Sweet Home Mine formed in two separate events: Late Cretaceous (Laramide-related) and Oligocene (Rio Grande Rift-related). Thus, the age of Mo mineralization at the Sweet Home Mine clearly predates that of the Oligocene Climax-type deposits elsewhere in the Colorado Mineral Belt. The Re-Os and Rb-Sr ages also constrain the age of the latest deformation along the Contact Structure to between 62.77±0.50 Ma and 26.26±0.38 Ma, which was employed and/or crosscut by Late Cretaceous and Oligocene fluids. Along the Contact Structure Late Cretaceous molybdenite is spatially associated with Oligocene minerals in the same vein system, a feature that precludes molybdenite recrystallization or reprecipitation by Oligocene ore fluids. Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. The numerical modeling study setup in a generic porphyry Cu-environment presents new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. This study investigates the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing, and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation. The epithermal Pirquitas Sn-Ag-Pb-Zn mine in NW Argentina is hosted in a domain of metamorphosed sediments without geological evidence for volcanic activity within a distance of about 10 km from the deposit. However, recent geochemical studies of ore-stage fluid inclusions indicate a significant contribution of magmatic volatiles. This study tested different formation models by applying an existing numerical process model for porphyry-epithermal systems with a magmatic intrusion located either at a distance of about 10 km underneath the nearest active volcano or hidden underneath the deposit. The results show that the migration of the ore fluid over a 10-km distance results in metal precipitation by cooling before the deposit site is reached. In contrast, simulations with a hidden magmatic intrusion beneath the Pirquitas deposit are in line with field observations, which include mineralized hydrothermal breccias in the deposit area.}, language = {en} } @article{HeckenbachBruneGlerumetal.2021, author = {Heckenbach, Esther Lina and Brune, Sascha and Glerum, Anne C. and Bott, Judith}, title = {Is there a speed limit for the thermal steady-state assumption in continental rifts?}, series = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, volume = {22}, journal = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, number = {3}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1525-2027}, doi = {10.1029/2020GC009577}, pages = {18}, year = {2021}, abstract = {The lithosphere is often assumed to reside in a thermal steady-state when quantitatively describing the temperature distribution in continental interiors and sedimentary basins, but also at active plate boundaries. Here, we investigate the applicability limit of this assumption at slowly deforming continental rifts. To this aim, we assess the tectonic thermal imprint in numerical experiments that cover a range of realistic rift configurations. For each model scenario, the deviation from thermal equilibrium is evaluated. This is done by comparing the transient temperature field of every model to a corresponding steady-state model with an identical structural configuration. We find that the validity of the thermal steady-state assumption strongly depends on rift type, divergence velocity, sampling location, and depth within the rift. Maximum differences between transient and steady-state models occur in narrow rifts, at the rift sides, and if the extension rate exceeds 0.5-2 mm/a. Wide rifts, however, reside close to thermal steady-state even for high extension velocities. The transient imprint of rifting appears to be overall negligible for shallow isotherms with a temperature less than 100 degrees C. Contrarily, a steady-state treatment of deep crustal isotherms leads to an underestimation of crustal temperatures, especially for narrow rift settings. Thus, not only relatively fast rifts like the Gulf of Corinth, Red Sea, and Main Ethiopian Rift, but even slow rifts like the Kenya Rift, Rhine Graben, and Rio Grande Rift must be expected to feature a pronounced transient component in the temperature field and to therefore violate the thermal steady-state assumption for deeper crustal isotherms.}, language = {en} } @incollection{HaaseThimBender2022, author = {Haase, Jennifer and Thim, Christof and Bender, Benedict}, title = {Expanding modeling notations}, series = {Business process management workshops}, volume = {436}, booktitle = {Business process management workshops}, editor = {Marrella, Andrea and Weber, Barbara}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-94342-4}, doi = {10.1007/978-3-030-94343-1_15}, pages = {197 -- 208}, year = {2022}, abstract = {Creativity is a common aspect of business processes and thus needs a proper representation through process modeling notations. However, creative processes constitute highly flexible process elements, as new and unforeseeable outcome is developed. This presents a challenge for modeling languages. Current methods representing creative-intensive work are rather less able to capture creative specifics which are relevant to successfully run and manage these processes. We outline the concept of creative-intensive processes and present an example from a game design process in order to derive critical process aspects relevant for its modeling. Six aspects are detected, with first and foremost: process flexibility, as well as temporal uncertainty, experience, types of creative problems, phases of the creative process and individual criteria. By first analyzing what aspects of creative work modeling notations already cover, we further discuss which modeling extensions need to be developed to better represent creativity within business processes. We argue that a proper representation of creative work would not just improve the management of those processes, but can further enable process actors to more efficiently run these creative processes and adjust them to better fit to the creative needs.}, language = {en} }