@phdthesis{Krummenauer2022, author = {Krummenauer, Linda}, title = {Global heat adaptation among urban populations and its evolution under different climate futures}, doi = {10.25932/publishup-55929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559294}, school = {Universit{\"a}t Potsdam}, pages = {xix, 161}, year = {2022}, abstract = {Heat and increasing ambient temperatures under climate change represent a serious threat to human health in cities. Heat exposure has been studied extensively at a global scale. Studies comparing a defined temperature threshold with the future daytime temperature during a certain period of time, had concluded an increase in threat to human health. Such findings however do not explicitly account for possible changes in future human heat adaptation and might even overestimate heat exposure. Thus, heat adaptation and its development is still unclear. Human heat adaptation refers to the local temperature to which populations are adjusted to. It can be inferred from the lowest point of the U- or V-shaped heat-mortality relationship (HMR), the Minimum Mortality Temperature (MMT). While epidemiological studies inform on the MMT at the city scale for case studies, a general model applicable at the global scale to infer on temporal change in MMTs had not yet been realised. The conventional approach depends on data availability, their robustness, and on the access to daily mortality records at the city scale. Thorough analysis however must account for future changes in the MMT as heat adaptation happens partially passively. Human heat adaptation consists of two aspects: (1) the intensity of the heat hazard that is still tolerated by human populations, meaning the heat burden they can bear and (2) the wealth-induced technological, social and behavioural measures that can be employed to avoid heat exposure. The objective of this thesis is to investigate and quantify human heat adaptation among urban populations at a global scale under the current climate and to project future adaptation under climate change until the end of the century. To date, this has not yet been accomplished. The evaluation of global heat adaptation among urban populations and its evolution under climate change comprises three levels of analysis. First, using the example of Germany, the MMT is calculated at the city level by applying the conventional method. Second, this thesis compiles a data pool of 400 urban MMTs to develop and train a new model capable of estimating MMTs on the basis of physical and socio-economic city characteristics using multivariate non-linear multivariate regression. The MMT is successfully described as a function of the current climate, the topography and the socio-economic standard, independently of daily mortality data for cities around the world. The city-specific MMT estimates represents a measure of human heat adaptation among the urban population. In a final third analysis, the model to derive human heat adaptation was adjusted to be driven by projected climate and socio-economic variables for the future. This allowed for estimation of the MMT and its change for 3 820 cities worldwide for different combinations of climate trajectories and socio-economic pathways until 2100. The knowledge on the evolution of heat adaptation in the future is a novelty as mostly heat exposure and its future development had been researched. In this work, changes in heat adaptation and exposure were analysed jointly. A wide range of possible health-related outcomes up to 2100 was the result, of which two scenarios with the highest socio-economic developments but opposing strong warming levels were highlighted for comparison. Strong economic growth based upon fossil fuel exploitation is associated with a high gain in heat adaptation, but may not be able to compensate for the associated negative health effects due to increased heat exposure in 30\% to 40\% of the cities investigated caused by severe climate change. A slightly less strong, but sustainable growth brings moderate gains in heat adaptation but a lower heat exposure and exposure reductions in 80\% to 84\% of the cities in terms of frequency (number of days exceeding the MMT) and intensity (magnitude of the MMT exceedance) due to a milder global warming. Choosing a 2 ° C compatible development by 2100 would therefore lower the risk of heat-related mortality at the end of the century. In summary, this thesis makes diverse and multidisciplinary contributions to a deeper understanding of human adaptation to heat under the current and the future climate. It is one of the first studies to carry out a systematic and statistical analysis of urban characteristics which are useful as MMT drivers to establish a generalised model of human heat adaptation, applicable at the global level. A broad range of possible heat-related health options for various future scenarios was shown for the first time. This work is of relevance for the assessment of heat-health impacts in regions where mortality data are not accessible or missing. The results are useful for health care planning at the meso- and macro-level and to urban- and climate change adaptation planning. Lastly, beyond having met the posed objective, this thesis advances research towards a global future impact assessment of heat on human health by providing an alternative method of MMT estimation, that is spatially and temporally flexible in its application.}, language = {en} } @phdthesis{Antoniewicz2016, author = {Antoniewicz, Franziska}, title = {Automatic evaluations of exercising}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-92280}, school = {Universit{\"a}t Potsdam}, year = {2016}, abstract = {Changing the perspective sometimes offers completely new insights to an already well-known phenomenon. Exercising behavior, defined as planned, structured and repeated bodily movements with the intention to maintain or increase the physical fitness (Caspersen, Powell, \& Christenson, 1985), can be thought of as such a well-known phenomenon that has been in the scientific focus for many decades (Dishman \& O'Connor, 2005). Within these decades a perspective that assumes rational and controlled evaluations as the basis for decision making, was predominantly used to understand why some people engage in physical activity and others do not (Ekkekakis \& Zenko, 2015). Dual-process theories (Ekkekakis \& Zenko, 2015; Payne \& Gawronski, 2010) provide another perspective, that is not exclusively influenced by rational reasoning. These theories differentiate two different processes that guide behavior "depending on whether they operate automatically or in a controlled fashion" (Gawronski \& Creighton, 2012, p. 282). Following this line of thought, exercise behavior is not solely influenced by thoughtful deliberations (e.g. concluding that exercising is healthy) but also by spontaneous affective reactions (e.g. disliking being sweaty while exercising). The theoretical frameworks of dual-process models are not new in psychology (Chaiken \& Trope, 1999) and have already been used for the explanation of numerous behaviors (e.g. Hofmann, Friese, \& Wiers, 2008; Huijding, de Jong, Wiers, \& Verkooijen, 2005). However, they have only rarely been used for the explanation of exercise behavior (e.g. Bluemke, Brand, Schweizer, \& Kahlert, 2010; Conroy, Hyde, Doerksen, \& Ribeiro, 2010; Hyde, Doerksen, Ribeiro, \& Conroy, 2010). The assumption of two dissimilar behavior influencing processes, differs fundamentally from previous theories and thus from the research that has been conducted in the last decades in exercise psychology. Research mainly concentrated on predictors of the controlled processes and addressed the identified predictors in exercise interventions (Ekkekakis \& Zenko, 2015; Hagger, Chatzisarantis, \& Biddle, 2002). Predictors arising from the described automatic processes, for example automatic evaluations for exercising (AEE), have been neglected in exercise psychology for many years. Until now, only a few researchers investigated the influence of these AEE for exercising behavior (Bluemke et al., 2010; Brand \& Schweizer, 2015; Markland, Hall, Duncan, \& Simatovic, 2015). Marginally more researchers focused on the impact of AEE for physical activity behavior (Calitri, Lowe, Eves, \& Bennett, 2009; Conroy et al., 2010; Hyde et al., 2010; Hyde, Elavsky, Doerksen, \& Conroy, 2012). The extant studies mainly focused on the quality of AEE and the associated quantity of exercise (exercise much or little; Bluemke et al., 2010; Calitri et al., 2009; Conroy et al., 2010; Hyde et al., 2012). In sum, there is still a dramatic lack of empirical knowledge, when applying dual-process theories to exercising behavior, even though these theories have proven to be successful in explaining behavior in many other health-relevant domains like eating, drinking or smoking behavior (e.g. Hofmann et al., 2008). The main goal of the present dissertation was to collect empirical evidence for the influence of AEE on exercise behavior and to expand the so far exclusively correlational studies by experimentally controlled studies. By doing so, the ongoing debate on a paradigm shift from controlled and deliberative influences of exercise behavior towards approaches that consider automatic and affective influences (Ekkekakis \& Zenko, 2015) should be encouraged. All three conducted publications are embedded in dual-process theorizing (Gawronski \& Bodenhausen, 2006, 2014; Strack \& Deutsch, 2004). These theories offer a theoretical framework that could integrate the established controlled variables of exercise behavior explanation and additionally consider automatic factors for exercise behavior like AEE. Taken together, the empirical findings collected suggest that AEE play an important and diverse role for exercise behavior. They represent exercise setting preferences, are a cause for short-term exercise decisions and are decisive for long-term exercise adherence. Adding to the few already present studies in this field, the influence of (positive) AEE for exercise behavior was confirmed in all three presented publications. Even though the available set of studies needs to be extended in prospectively studies, first steps towards a more complete picture have been taken. Closing with the beginning of the synopsis: I think that time is right for a change of perspectives! This means a careful extension of the present theories with controlled evaluations explaining exercise behavior. Dual-process theories including controlled and automatic evaluations could provide such a basis for future research endeavors in exercise psychology.}, language = {en} }