@phdthesis{Goetze2010, author = {G{\"o}tze, Jan Philipp}, title = {Influence of protein and solvent environments on quantum chemical properties of photosynthesis enzymes and photoreceptors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51135}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {This thesis contains quantum chemical models and force field calculations for the RuBisCO isotope effect, the spectral characteristics of the blue-light sensor BLUF and the light harvesting complex II. The work focuses on the influence of the environment on the corresponding systems. For RuBisCO, it was found that the isotopic effect is almost unaffected by the environment. In case of the BLUF domain, an amino acid was found to be important for the UV/vis spectrum, but unaccounted for in experiments so far (Ser41). The residue was shown to be highly mobile and with a systematic influence on the spectral shift of the BLUF domain chromophore (flavin). Finally, for LHCII it was found that small changes in the geometry of a Chlorophyll b/Violaxanthin chromophore pair can have strong influences regarding the light harvesting mechanism. Especially here it was seen that the proper description of the environment can be critical. In conclusion, the environment was observed to be of often unexpected importance for the molecular properties, and it seems not possible to give a reliable estimate on the changes created by the presence of the environment.}, language = {en} } @phdthesis{Arnold2014, author = {Arnold, Anne}, title = {Modeling photosynthesis and related metabolic processes : from detailed examination to consideration of the metabolic context}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72277}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Mathematical modeling of biological systems is a powerful tool to systematically investigate the functions of biological processes and their relationship with the environment. To obtain accurate and biologically interpretable predictions, a modeling framework has to be devised whose assumptions best approximate the examined scenario and which copes with the trade-off of complexity of the underlying mathematical description: with attention to detail or high coverage. Correspondingly, the system can be examined in detail on a smaller scale or in a simplified manner on a larger scale. In this thesis, the role of photosynthesis and its related biochemical processes in the context of plant metabolism was dissected by employing modeling approaches ranging from kinetic to stoichiometric models. The Calvin-Benson cycle, as primary pathway of carbon fixation in C3 plants, is the initial step for producing starch and sucrose, necessary for plant growth. Based on an integrative analysis for model ranking applied on the largest compendium of (kinetic) models for the Calvin-Benson cycle, those suitable for development of metabolic engineering strategies were identified. Driven by the question why starch rather than sucrose is the predominant transitory carbon storage in higher plants, the metabolic costs for their synthesis were examined. The incorporation of the maintenance costs for the involved enzymes provided a model-based support for the preference of starch as transitory carbon storage, by only exploiting the stoichiometry of synthesis pathways. Many photosynthetic organisms have to cope with processes which compete with carbon fixation, such as photorespiration whose impact on plant metabolism is still controversial. A systematic model-oriented review provided a detailed assessment for the role of this pathway in inhibiting the rate of carbon fixation, bridging carbon and nitrogen metabolism, shaping the C1 metabolism, and influencing redox signal transduction. The demand of understanding photosynthesis in its metabolic context calls for the examination of the related processes of the primary carbon metabolism. To this end, the Arabidopsis core model was assembled via a bottom-up approach. This large-scale model can be used to simulate photoautotrophic biomass production, as an indicator for plant growth, under so-called optimal, carbon-limiting and nitrogen-limiting growth conditions. Finally, the introduced model was employed to investigate the effects of the environment, in particular, nitrogen, carbon and energy sources, on the metabolic behavior. This resulted in a purely stoichiometry-based explanation for the experimental evidence for preferred simultaneous acquisition of nitrogen in both forms, as nitrate and ammonium, for optimal growth in various plant species. The findings presented in this thesis provide new insights into plant system's behavior, further support existing opinions for which mounting experimental evidences arise, and posit novel hypotheses for further directed large-scale experiments.}, language = {en} } @phdthesis{Guislain2019, author = {Guislain, Alexis}, title = {Eco-physiological consequences of fluctuating light on phytoplankton}, doi = {10.25932/publishup-46927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469272}, school = {Universit{\"a}t Potsdam}, pages = {161}, year = {2019}, abstract = {Phytoplankton growth depends not only on the mean intensity but also on the dynamics of the light supply. The nonlinear light-dependency of growth is characterized by a small number of basic parameters: the compensation light intensity PARcompμ, where production and losses are balanced, the growth efficiency at sub-saturating light αµ, and the maximum growth rate at saturating light µmax. In surface mixed layers, phytoplankton may rapidly move between high light intensities and almost darkness. Because of the different frequency distribution of light and/or acclimation processes, the light-dependency of growth may differ between constant and fluctuating light. Very few studies measured growth under fluctuating light at a sufficient number of mean light intensities to estimate the parameters of the growth-irradiance relationship. Hence, the influence of light dynamics on µmax, αµ and PARcompμ are still largely unknown. By extension, accurate modelling predictions of phytoplankton development under fluctuating light exposure remain difficult to make. This PhD thesis does not intend to directly extrapolate few experimental results to aquatic systems - but rather improving the mechanistic understanding of the variation of the light-dependency of growth under light fluctuations and effects on phytoplankton development. In Lake TaiHu and at the Three Gorges Reservoir (China), we incubated phytoplankton communities in bottles placed either at fixed depths or moved vertically through the water column to mimic vertical mixing. Phytoplankton at fixed depths received only the diurnal changes in light (defined as constant light regime), while phytoplankton received rapidly fluctuating light by superimposing the vertical light gradient on the natural sinusoidal diurnal sunlight. The vertically moved samples followed a circular movement with 20 min per revolution, replicating to some extent the full overturn of typical Langmuir cells. Growth, photosynthesis, oxygen production and respiration of communities (at Lake TaiHu) were measured. To complete these investigations, a physiological experiment was performed in the laboratory on a toxic strain of Microcystis aeruginosa (FACBH 1322) incubated under 20 min period fluctuating light. Here, we measured electron transport rates and net oxygen production at a much higher time resolution (single minute timescale). The present PhD thesis provides evidence for substantial effects of fluctuating light on the eco-physiology of phytoplankton. Both experiments performed under semi-natural conditions in Lake TaiHu and at the Three Gorges Reservoir gave similar results. The significant decline in community growth efficiencies αµ under fluctuating light was caused for a great share by different frequency distribution of light intensities that shortened the effective daylength for production. The remaining gap in community αµ was attributed to species-specific photoacclimation mechanisms and to light-dependent respiratory losses. In contrast, community maximal growth rates µmax were similar between incubations at constant and fluctuating light. At daily growth saturating light supply, differences in losses for biosynthesis between the two light regimes were observed. Phytoplankton experiencing constant light suffered photo-inhibition - leading to photosynthesis foregone and additional respiratory costs for photosystems repair. On the contrary, intermittent exposure to low and high light intensities prevented photo-inhibition of mixed algae but forced them to develop alternative light strategy. They better harvested and exploited surface irradiance by enhancing their photosynthesis. In the laboratory, we showed that Microcystis aeruginosa increased its oxygen consumption by dark respiration in the light few minutes only after exposure to increasing light intensities. More, we proved that within a simulated Langmuir cell, the net production at saturating light and the compensation light intensity for production at limiting light are positively related. These results are best explained by an accumulation of photosynthetic products at increasing irradiance and mobilization of these fresh resources by rapid enhancement of dark respiration for maintenance and biosynthesis at decreasing irradiance. At the daily timescale, we showed that the enhancement of photosynthesis at high irradiance for biosynthesis of species increased their maintenance respiratory costs at limiting light. Species-specific growth at saturating light µmax and compensation light intensity for growth PARcompμ of species incubated in Lake TaiHu were positively related. Because of this species-specific physiological tradeoff, species displayed different light affinities to limiting and saturating light - thereby exhibiting a gleaner-opportunist tradeoff. In Lake TaiHu, we showed that inter-specific differences in light acquisition traits (µmax and PARcompμ) allowed coexis¬tence of species on a gradient of constant light while avoiding competitive exclusion. More interestingly we demonstrated for the first time that vertical mixing (inducing fluctuating light supply for phytoplankton) may alter or even reverse the light utilization strategies of species within couple of days. The intra-specific variation in traits under fluctuating light increased the niche space for acclimated species, precluding competitive exclusion. Overall, this PhD thesis contributes to a better understanding of phytoplankton eco-physiology under fluctuating light supply. This work could enhance the quality of predictions of phytoplankton development under certain weather conditions or climate change scenarios.}, language = {en} } @phdthesis{Borghi2021, author = {Borghi, Gian Luca}, title = {Evolution and diversity of photosynthetic metabolism in C3, C3-C4 intermediate and C4 plants}, doi = {10.25932/publishup-52220}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522200}, school = {Universit{\"a}t Potsdam}, pages = {163}, year = {2021}, abstract = {In C3 plants, CO2 diffuses into the leaf and is assimilated by the Calvin-Benson cycle in the mesophyll cells. It leaves Rubisco open to its side reaction with O2, resulting in a wasteful cycle known as photorespiration. A sharp fall in atmospheric CO2 levels about 30 million years ago have further increased the side reaction with O2. The pressure to reduce photorespiration led, in over 60 plant genera, to the evolution of a CO2-concentrating mechanism called C4 photosynthesis; in this mode, CO2 is initially incorporated into 4-carbon organic acids, which diffuse to the bundle sheath and are decarboxylated to provide CO2 to Rubisco. Some genera, like Flaveria, contain several species that represent different steps in this complex evolutionary process. However, the majority of terrestrial plant species did not evolve a CO2-concentrating mechanism and perform C3 photosynthesis. This thesis compares photosynthetic metabolism in several species with C3, C4 and intermediate modes of photosynthesis. Metabolite profiling and stable isotope labelling were performed to detect inter-specific differences changes in metabolite profile and, hence, how a pathway operates. The results obtained were subjected to integrative data analyses like hierarchical clustering and principal component analysis, and were deepened by correlation analyses to uncover specific metabolic features and reaction steps that were conserved or differed between species. The main findings are that Calvin-Benson cycle metabolite profiles differ between C3 and C4 species and between different C3 species, including a very different response to rising irradiance in Arabidopsis and rice. These findings confirm Calvin-Benson cycle operation diverged between C3 and C4 species and, most unexpectedly, even between different C3 species. Moreover, primary metabolic profiles supported the current C4 evolutionary model in the genus Flaveria and also provided new insights and opened up new questions. Metabolite profiles also point toward a progressive adjustment of the Calvin-Benson cycle during the evolution of C4 photosynthesis. Overall, this thesis point out the importance of a metabolite-centric approach to uncover underlying differences in species apparently sharing the same photosynthetic routes and as a valid method to investigate evolutionary transition between C3 and C4 photosynthesis.}, language = {en} } @phdthesis{Uflewski2021, author = {Uflewski, Michal}, title = {Characterizing the regulation of proton antiport across the thylakoid membrane}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2021}, abstract = {Die Energie, die zum Antrieb photochemischer Reaktionen ben{\"o}tigt wird, stammt aus der Ladungstrennung an der Thylakoidmembran. Aufrgrund des Unterschieds in der Protonenkonzentration zwischen dem Stroma der Chloroplasten und dem Thylakoidlumen wird eine Protonenmotorische Kraft (pmf) erzeugt. Die pmf setzt sich aus dem Protonengradienten (ΔpH) und dem Membranpotential (ΔΨ) zusammen, die gemeinsam die ATP-Synthese antreiben. In der Natur schwankt die Energiemenge, die die Photosynthese antreibt, aufgrund h{\"a}ufiger {\"A}nderungen der Lichtintensit{\"a}t. Der Thylakoid-Ionentransport kann den Energiefluss durch einen Photosyntheseapparat an die Lichtverf{\"u}gbarkeit anpassen, indem er die pmf-Zusammensetzung ver{\"a}ndert. Die Dissipation von ΔΨ verringert die Ladungsrekombination am Photosystem II, so dass ein Anstieg der ΔpH-Komponente eine R{\"u}ckkopplung zur Herabregulierung der Photosynthese ausl{\"o}sen kann. Der durch den K+-Austausch-Antiporter 3 (KEA3) gesteuerte K+/H+-Antiport reduziert den ΔpH-Anteil von pmf und d{\"a}mpft dadurch das nicht-photochemische Quenching (NPQ). Infolgedessen erh{\"o}ht sich die Photosyntheseeffizienz beim {\"U}bergang zu geringerer Lichtintensit{\"a}t. Ziel dieser Arbeit war es, Antworten auf Fragen zur Regulierung der KEA3-Aktivit{\"a}t und ihrer Rolle in der Pflanzenentwicklung zu finden. Die vorgestellten Daten zeigen, dass KEA3 in Pflanzen, denen der Chloroplasten-ATP-Synthase-Assembly-Faktor CGL160 fehlt und die eine verminderte ATP-Synthase-Aktivit{\"a}t aufweisen, eine zentrale Rolle bei der Regulierung der Photosynthese und des Pflanzenwachstums unter station{\"a}ren Bedingungen spielt. Das Fehlen von KEA3 in der cgl160-Mutante f{\"u}hrt zu einer starken Beeintr{\"a}chtigung des Wachstums, da die Photosynthese aufgrund des erh{\"o}hten pH-abh{\"a}ngigen NPQs und des verringerten Elektronenflusses durch den Cytochrom b6f-Komplex eingeschr{\"a}nkt ist. Die {\"U}berexpression von KEA3 in der cgl160-Mutante erh{\"o}ht die Ladungsrekombination im Photosystem II und f{\"o}rdert die Photosynthese. In Zeiten geringer ATP-Synthase-Aktivit{\"a}t profitieren die Pflanzen also von der KEA3-Aktivit{\"a}t. KEA3 unterliegt einer Dimerisierung {\"u}ber seinen regulatorischen C-Terminus (RCT). Der RCT reagiert auf Ver{\"a}nderungen der Lichtintensit{\"a}t, da die Pflanzen, die KEA3 ohne diese Dom{\"a}ne exprimieren, einen reduzierten Lichtschutzmechanismus bei Lichtintensit{\"a}tsschwankungen aufweisen. Allerdings fixieren diese Pflanzen w{\"a}hrend der Photosynthese-Induktionsphase mehr Kohlenstoff als Gegenleistung f{\"u}r einen langfristigen Photoprotektor, was die regulierende Rolle von KEA3 in der Pflanzenentwicklung zeigt. Der KEA3-RCT ist dem Thylakoidstroma zugewandt, so dass seine Regulierung von lichtinduzierten Ver{\"a}nderungen in der Stroma-Umgebung abh{\"a}ngt. Die Regulierung der KEA3-Aktivit{\"a}t {\"u}berschneidet sich mit den pH-{\"A}nderungen im Stroma, die bei Lichtschwankungen auftreten. Es hat sich gezeigt, dass ATP und ADP eine Affinit{\"a}t zum heterolog exprimierten KEA3 RCT haben. Eine solche Wechselwirkung verursacht Konformations{\"a}nderungen in der RCT-Struktur. Die Faltung der RCT-Liganden-Interaktion h{\"a}ngt vom pH-Wert der Umgebung ab. Mit einer Kombination aus Bioinformatik und In-vitro-Ansatz wurde die ATP-Bindungsstelle am RCT lokalisiert. Das Einf{\"u}gen einer Punktmutation in der KEA3-RCT Bindungsstelle in planta f{\"u}hrte zu einer Deregulierung der Antiporteraktivit{\"a}t beim {\"U}bergang zu wenig Licht. Die in dieser Arbeit vorgestellten Daten erm{\"o}glichten es uns, die Rolle von KEA3 bei der Anpassung der Photosynthese umfassender zu bewerten und Modelle zur Regulierung der KEA3-Aktivit{\"a}t w{\"a}hrend des {\"U}bergangs zwischen verschiedenen Lichtintensit{\"a}ten vorzuschlagen.}, language = {en} } @phdthesis{vonBismarck2023, author = {von Bismarck, Thekla}, title = {The influence of long-term light acclimation on photosynthesis in dynamic light}, school = {Universit{\"a}t Potsdam}, pages = {x, 163}, year = {2023}, abstract = {Photosynthesis converts light into metabolic energy which fuels plant growth. In nature, many factors influence light availability for photosynthesis on different time scales, from shading by leaves within seconds up to seasonal changes over months. Variability of light energy supply for photosynthesis can limit a plant´s biomass accumulation. Plants have evolved multiple strategies to cope with strongly fluctuation light (FL). These range from long-term optimization of leaf morphology and physiology and levels of pigments and proteins in a process called light acclimation, to rapid changes in protein activity within seconds. Therefore, uncovering how plants deal with FL on different time scales may provide key ideas for improving crop yield. Photosynthesis is not an isolated process but tightly integrates with metabolism through mutual regulatory interactions. We thus require mechanistic understanding of how long-term light acclimation shapes both, dynamic photosynthesis and its interactions with downstream metabolism. To approach this, we analyzed the influence of growth light on i) the function of known rapid photosynthesis regulators KEA3 and VCCN1 in dynamic photosynthesis (Chapter 2-3) and ii) the interconnection of photosynthesis with photorespiration (PR; Chapter 4). We approached topic (i) by quantifying the effect of different growth light regimes on photosynthesis and photoprotection by using kea3 and vccn1 mutants. Firstly, we found that, besides photosynthetic capacity, the activities of VCCN1 and KEA3 during a sudden high light phase also correlated with growth light intensity. This finding suggests regulation of both proteins by the capacity of downstream metabolism. Secondly, we showed that KEA3 accelerated photoprotective non-photochemical quenching (NPQ) kinetics in two ways: Directly via downregulating the lumen proton concentration and thereby de-activating pH-dependent NPQ, and indirectly via suppressing accumulation of the photoprotective pigment zeaxanthin. For topic (ii), we analyzed the role of PR, a process which recycles a toxic byproduct of the carbon fixation reactions, in metabolic flexibility in a dynamically changing light environment. For this we employed the mutants hpr1 and ggt1 with a partial block in PR. We characterized the function of PR during light acclimation by tracking molecular and physiological changes of the two mutants. Our data, in contrast to previous reports, disprove a generally stronger physiological relevance of PR under dynamic light conditions. Additionally, the two different mutants showed pronounced and distinct metabolic changes during acclimation to a condition inducing higher photosynthetic activity. This underlines that PR cannot be regarded purely as a cyclic detoxification pathway for 2PG. Instead, PR is highly interconnected with plant metabolism, with GGT1 and HPR1 representing distinct metabolic modulators. In summary, the presented work provides further insight into how energetic and metabolic flexibility is ensured by short-term regulators and PR during long-term light acclimation.}, language = {en} } @phdthesis{Rolo2023, author = {Rolo, David}, title = {Assembly of photosystem I in thylakoid membranes}, school = {Universit{\"a}t Potsdam}, pages = {177}, year = {2023}, abstract = {The light reactions of photosynthesis are carried out by a series of multiprotein complexes embedded in thylakoid membranes. Among them, photosystem I (PSI), acting as plastocyanin-ferderoxin oxidoreductase, catalyzes the final reaction. Together with light-harvesting antenna I, PSI forms a high-molecular-weight supercomplex of ~600 kDa, consisting of eighteen subunits and nearly two hundred co-factors. Assembly of the various components into a functional thylakoid membrane complex requires precise coordination, which is provided by the assembly machinery. Although this includes a small number of proteins (PSI assembly factors) that have been shown to play a role in the formation of PSI, the process as a whole, as well as the intricacy of its members, remains largely unexplored. In the present work, two approaches were used to find candidate PSI assembly factors. First, EnsembleNet was used to select proteins thought to be functionally related to known PSI assembly factors in Arabidopsis thaliana (approach I), and second, co-immunoprecipitation (Co-IP) of tagged PSI assembly factors in Nicotiana tabacum was performed (approach II). Here, the novel PSI assembly factors designated CO-EXPRESSED WITH PSI ASSEMBLY 1 (CEPA1) and Ycf4-INTERACTING PROTEIN 1 (Y4IP1) were identified. A. thaliana null mutants for CEPA1 and Y4IP1 showed a growth phenotype and pale leaves compared with the wild type. Biophysical experiments using pulse amplitude modulation (PAM) revealed insufficient electron transport on the PSII acceptor side. Biochemical analyses revealed that both CEPA1 and Y4IP1 are specifically involved in PSI accumulation in A. thaliana at the post-translational level but are not essential. Consistent with their roles as factors in the assembly of a thylakoid membrane protein complex, the two proteins localize to thylakoid membranes. Remarkably, cepa1 y4ip1 double mutants exhibited lethal phenotypes in early developmental stages under photoautotrophic growth. Finally, co-IP and native gel experiments supported a possible role for CEPA1 and Y4IP1 in mediating PSI assembly in conjunction with other PSI assembly factors (e.g., PPD1- and PSA3-CEPA1 and Ycf4-Y4IP1). The fact that CEPA1 and Y4IP1 are found exclusively in green algae and higher plants suggests eukaryote-specific functions. Although the specific mechanisms need further investigation, CEPA1 and Y4IP1 are two novel assembly factors that contribute to PSI formation.}, language = {en} }