@misc{StieglervonHoermannMuelleretal.2020, author = {Stiegler, Jonas and von Hoermann, Christian and M{\"u}ller, J{\"o}rg and Benbow, Mark Eric and Heurich, Marco}, title = {Carcass provisioning for scavenger conservation in a temperate forest ecosystem}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {955}, issn = {1866-8372}, doi = {10.25932/publishup-47109}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471099}, pages = {15}, year = {2020}, abstract = {Carrion plays an essential role in shaping the structure and functioning of ecosystems and has far-reaching implications for biodiversity conservation. The change in availability and type of carcasses throughout ecosystems can involve negative effects for scavenging communities. To address this issue, there have been recent conservation management measures of carrion provision in natural systems. However, the optimal conditions under which exposing carcasses to optimize conservation outcomes are still limited. Here, we used camera traps throughout elevational and vegetational gradients to monitor the consumption of 48 deer carcasses over a study period of six years by evaluating 270,279 photographs resulting out of 15,373 trap nights. We detected 17 species visiting carcass deployments, including five endangered species. Our results show that large carcasses, the winter season, and a heterogeneous surrounding habitat enhanced the frequency of carcass visits and the species richness of scavenger assemblages. Contrary to our expectations, carcass species, condition (fresh/frozen), and provision schedule (continuous vs single exposure) did not influence scavenging frequency or diversity. The carcass visitation frequency increased with carcass mass and lower temperatures. The effect of large carcasses was especially pronounced for mesopredators and the Eurasian lynx (Lynx lynx ). Lynx were not too influenced in its carrion acquisition by the season, but exclusively preferred remote habitats containing higher forest cover. Birds of prey, mesopredators, and top predators were also positively influenced by the visiting rate of ravens (Corvus corax ), whereas no biotic or abiotic preferences were found for wild boars (Sus scrofa ). This study provides evidence that any ungulate species of carrion, either in a fresh or in previously frozen condition, attracts a high diversity of scavengers especially during winter, thereby supporting earlier work that carcass provisions may support scavenger communities and endangered species.}, language = {en} } @misc{ZimmermannStoofLeichsenringKruseetal.2020, author = {Zimmermann, Heike Hildegard and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and M{\"u}ller, Juliane and Stein, Ruediger and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-52515}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525154}, pages = {18}, year = {2020}, abstract = {The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7 \% of our sequences being assigned to diatoms across 18 different families, with 38.6 \% of them being resolved to species and 25.8 \% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2 \% of the assemblage point towards past sea-ice presence.}, language = {en} } @misc{WestburyHartmannBarlowetal.2018, author = {Westbury, Michael V. and Hartmann, Stefanie and Barlow, Axel and Wiesel, Ingrid and Leo, Viyanna and Welch, Rebecca and Parker, Daniel M. and Sicks, Florian and Ludwig, Arne and Dalen, Love and Hofreiter, Michael}, title = {Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {589}, issn = {1866-8372}, doi = {10.25932/publishup-41413}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414132}, pages = {13}, year = {2018}, abstract = {Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species.}, language = {en} } @misc{RomeroMunozFandosBenitezLopezetal.2020, author = {Romero-Munoz, Alfredo and Fandos, Guillermo and Ben{\´i}tez-L{\´o}pez, Ana and Kuemmerle, Tobias}, title = {Habitat destruction and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-56769}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567696}, pages = {15}, year = {2020}, abstract = {Global biodiversity is under high and rising anthropogenic pressure. Yet, how the taxonomic, phylogenetic, and functional facets of biodiversity are affected by different threats over time is unclear. This is particularly true for the two main drivers of the current biodiversity crisis: habitat destruction and overexploitation. We provide the first long-term assessment of multifaceted biodiversity changes caused by these threats for any tropical region. Focussing on larger mammals in South America's 1.1 million km(2) Gran Chaco region, we assessed changes in multiple biodiversity facets between 1985 and 2015, determined which threats drive those changes, and identified remaining key areas for all biodiversity facets. Using habitat and threat maps, we found, first, that between 1985 and 2015 taxonomic (TD), phylogenetic (PD) and functional (FD) diversity all declined drastically across over half of the area assessed. FD declined about 50\% faster than TD and PD, and these declines were mainly driven by species loss, rather than species turnover. Second, habitat destruction, hunting, and both threats together contributed similar to 57\%, similar to 37\%, and similar to 6\% to overall facet declines, respectively. However, hunting pressure increased where TD and PD declined most strongly, whereas habitat destruction disproportionally contributed to FD declines. Third, just 23\% of the Chaco would have to be protected to safeguard the top 17\% of all three facets. Our findings uncover a widespread impoverishment of mammal species richness, evolutionary history, and ecological functions across broad areas of the Chaco due to increasing habitat destruction and hunting. Moreover, our results pinpoint key areas that should be preserved and managed to maintain all facets of mammalian diversity across the Chaco. More generally, our work highlights how long-term changes in biodiversity facets can be assessed and attributed to specific threats, to better understand human impacts on biodiversity and to guide conservation planning to mitigate them.}, language = {en} } @misc{DrygalaKorablevAnsorgeetal.2016, author = {Drygala, Frank and Korablev, Nikolay and Ansorge, Hermann and Fickel, J{\"o}rns and Isomursu, Marja and Elmeros, Morten and Kowalczyk, Rafał and Baltrunaite, Laima and Balciauskas, Linas and Saarma, Urmas and Schulze, Christoph and Borkenhagen, Peter and Frantz, Alain C.}, title = {Homogenous population genetic structure of the non-native raccoon dog (Nyctereutes procyonoides) in Europe as a result of rapid population expansion}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {540}, issn = {1866-8372}, doi = {10.25932/publishup-41092}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410921}, pages = {17}, year = {2016}, abstract = {The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species' dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large 'central' population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations.}, language = {en} } @misc{FosterGarvieWeissetal.2020, author = {Foster, William J. and Garvie, Christopher L. and Weiss, Anna M. and Muscente, A. Drew and Aberhan, Martin and Counts, John W. and Martindale, Rowan C.}, title = {Resilience of marine invertebrate communities during the early Cenozoic hyperthermals}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51601}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516011}, pages = {13}, year = {2020}, abstract = {The hyperthermal events of the Cenozoic, including the Paleocene-Eocene Thermal Maximum, provide an opportunity to investigate the potential effects of climate warming on marine ecosystems. Here, we examine the shallow benthic marine communities preserved in the late Cretaceous to Eocene strata on the Gulf Coastal Plain (United States). In stark contrast to the ecological shifts following the end-Cretaceous mass extinction, our data show that the early Cenozoic hyperthermals did not have a long-term impact on the generic diversity nor composition of the Gulf Coastal Plain molluscan communities. We propose that these communities were resilient to climate change because molluscs are better adapted to high temperatures than other taxa, as demonstrated by their physiology and evolutionary history. In terms of resilience, these communities differ from other shallow-water carbonate ecosystems, such as reef communities, which record significant changes during the early Cenozoic hyperthermals. These data highlight the strikingly different responses of community types, i.e., the almost imperceptible response of molluscs versus the marked turnover of foraminifera and reef faunas. The impact on molluscan communities may have been low because detrimental conditions did not devastate the entire Gulf Coastal Plain, allowing molluscs to rapidly recolonise vacated areas once harsh environmental conditions ameliorated.}, language = {en} } @misc{EhrlichKathGaedke2020, author = {Ehrlich, Elias and Kath, Nadja Jeanette and Gaedke, Ursula}, title = {The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {6}, issn = {1866-8372}, doi = {10.25932/publishup-51395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-513956}, pages = {14}, year = {2020}, abstract = {Theory predicts that trade-offs, quantifying costs of functional trait adjustments, crucially affect community trait adaptation to altered environmental conditions, but empirical verification is scarce. We evaluated trait dynamics (antipredator defense, maximum growth rate, and phosphate affinity) of a lake phytoplankton community in a seasonally changing environment, using literature trait data and 21 years of species-resolved high-frequency biomass measurements. The trait data indicated a concave defense-growth trade-off, promoting fast-growing species with intermediate defense. With seasonally increasing grazing pressure, the community shifted toward higher defense levels at the cost of lower growth rates along the trade-off curve, while phosphate affinity explained some deviations from it. We discuss how low fitness differences of species, inferred from model simulations, in concert with stabilizing mechanisms, e.g., arising from further trait dimensions, may lead to the observed phytoplankton diversity. In conclusion, quantifying trade-offs is key for predictions of community trait adaptation and biodiversity under environmental change.}, language = {en} }