@misc{RottlerFranckeBuergeretal.2020, author = {Rottler, Erwin and Francke, Till and B{\"u}rger, Gerd and Bronstert, Axel}, title = {Long-term changes in central European river discharge for 1869-2016}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-51776}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517763}, pages = {22}, year = {2020}, abstract = {Recent climatic changes have the potential to severely alter river runoff, particularly in snow-dominated river basins. Effects of changing snow covers superimpose with changes in precipitation and anthropogenic modifications of the watershed and river network. In the attempt to identify and disentangle long-term effects of different mechanisms, we employ a set of analytical tools to extract long-term changes in river runoff at high resolution. We combine quantile sampling with moving average trend statistics and empirical mode decomposition and apply these tools to discharge data recorded along rivers with nival, pluvial and mixed flow regimes as well as temperature and precipitation data covering the time frame 1869-2016. With a focus on central Europe, we analyse the long-term impact of snow cover and precipitation changes along with their interaction with reservoir constructions. Our results show that runoff seasonality of snow-dominated rivers decreases. Runoff increases in winter and spring, while discharge decreases in summer and at the beginning of autumn. We attribute this redistribution of annual flow mainly to reservoir constructions in the Alpine ridge. During the course of the last century, large fractions of the Alpine rivers were dammed to produce hydropower. In recent decades, runoff changes induced by reservoir constructions seem to overlap with changes in snow cover. We suggest that Alpine signals propagate downstream and affect runoff far outside the Alpine area in river segments with mixed flow regimes. Furthermore, our results hint at more (intense) rain-fall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation.}, language = {en} } @misc{ElsnerSchiblerHofreiteretal.2015, author = {Elsner, Julia and Schibler, J{\"o}rg and Hofreiter, Michael and Schlumbaum, Angela}, title = {Burial condition is the most important factor for mtDNA PCR amplification success in Palaeolithic equid remains from the Alpine foreland}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {727}, issn = {1866-8372}, doi = {10.25932/publishup-42976}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429763}, pages = {505 -- 515}, year = {2015}, abstract = {Faunal remains from Palaeolithic sites are important genetic sources to study preglacial and postglacial populations and to investigate the effect of climate change and human impact. Post mortem decay, resulting in fragmented and chemically modified DNA, is a key obstacle in ancient DNA analyses. In the absence of reliable methods to determine the presence of endogenous DNA in sub-fossil samples, temporal and spatial surveys of DNA survival on a regional scale may help to estimate the potential of faunal remains from a given time period and region. We therefore investigated PCR amplification success, PCR performance and post mortem damage in c. 47,000 to c. 12,000-year-old horse remains from 14 Palaeolithic sites along the Swiss Jura Mountains in relation to depositional context, tissue type, storage time and age, potentially influencing DNA preservation. The targeted 75 base pair mitochondrial DNA fragment could be amplified solely from equid remains from caves and not from any of the open dry and (temporary) wetland sites. Whether teeth are better than bones cannot be ultimately decided; however, both storage time after excavation and age significantly affect PCR amplification and performance, albeit not in a linear way. This is best explained by the—inevitable—heterogeneity of the data set. The extent of post mortem damage is not related to any of the potential impact factors. The results encourage comprehensive investigations of Palaeolithic cave sites, even from temperate regions.}, language = {en} }