@book{OPUS4-506, title = {Leadership and innovation in subnational government : case studies from Latin America}, editor = {Campbell, Tim and Fuhr, Harald}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5793}, publisher = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {This book is about inventing successes and good practices of governments that are "closer to the people". Numerous examples throughout Latin America indicate-often despite macroeconomic instability, high inflation, and strong top-down regulation-that subnational actors have repeatedly achieved what their central counterparts preached: sound policymaking, better administration, better services, more participation, and sustained economic development. But what makes some governments change course and move toward innovation? What triggers experimentation and, eventually, turns ordinary practice into good practice? The book answers some of these questions. It goes beyond a mere documentation of good and best practice, which is increasingly provided through international networks and Internet sites. Instead, it seeks a better understanding of the origins and fates of such successes at the micro level. The case studies and analytical chapters seek to explain: How good practice is born at the local level; Where innovative ideas come from; How such ideas are introduced in a new context, successfully implemented, and propagated locally and beyond; What donors can do to effectively assist processes of self-induced and bottom-up change.}, subject = {Lateinamerika}, language = {en} } @phdthesis{Varykhalov2005, author = {Varykhalov, Andrei}, title = {Quantum-size effects in the electronic structure of novel self-organized systems with reduced dimensionality}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5784}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The Thesis is focused on the properties of self-organized nanostructures. Atomic and electronic properties of different systems have been investigated using methods of electron diffraction, scanning tunneling microscopy and photoelectron spectroscopy. Implementation of the STM technique (including design, construction, and tuning of the UHV experimental set-up) has been done in the framework of present work. This time-consuming work is reported to greater detail in the experimental part of this Thesis. The scientific part starts from the study of quantum-size effects in the electronic structure of a two-dimensional Ag film on the supporting substrate Ni(111). Distinct quantum well states in the sp-band of Ag were observed in photoelectron spectra. Analysis of thickness- and angle-dependent photoemission supplies novel information on the properties of the interface. For the first time the Ni(111) relative band gap was indirectly probed in the ground-state through the electronic structure of quantum well states in the adlayer. This is particularly important for Ni where valence electrons are strongly correlated. Comparison of the experiment with calculations performed in the formalism of the extended phase accumulation model gives the substrate gap which is fully consistent with the one obtained by ab-initio LDA calculations. It is, however, in controversy to the band structure of Ni measured directly by photoemission. These results lend credit to the simplest view of photoemission from Ni, assigning early observed contradictions between theory and experiments to electron correlation effects in the final state of photoemission. Further, nanosystems of lower dimensionality have been studied. Stepped surfaces W(331) and W(551) were used as one-dimensional model systems and as templates for self-organization of Au nanoclusters. Photon energy dependent photoemission revealed a surface resonance which was never observed before on W(110) which is the base plane of the terrace microsurfaces. The dispersion E(k) of this state measured on stepped W(331) and W(551) with angle-resolved photoelectron spectroscopy is modified by a strong umklapp effect. It appears as two parabolas shifted symmetrically relative to the microsurface normal by half of the Brillouin zone of the step superlattice. The reported results are very important for understanding of the electronic properties of low-dimensional nanostructures. It was also established that W(331) and W(551) can serve as templates for self-organization of metallic nanostructures. A combined study of electronic and atomic properties of sub-monolayer amounts of gold deposited on these templates have shown that if the substrate is slightly pre-oxidized and the temperature is elevated, then Au can alloy with the first monolayer of W. As a result, a nanostructure of uniform clusters of a surface alloy is produced all over the steps. Such clusters feature a novel sp-band in the vicinity of the Fermi level, which appears split into constant energy levels due to effects of lateral quantization. The last and main part of this work is devoted to large-scale reconstructions on surfaces and nanostructures self-assembled on top. The two-dimensional surface carbide W(110)/C-R(15x3) has been extensively investigated. Photoemission studies of quantum size effects in the electronic structure of this reconstruction, combined with an investigation of its surface geometry, lead to an advanced structural model of the carbide overlayer. It was discovered that W(110)/C-R(15x3) can control self-organization of adlayers into nanostructures with extremely different electronic and structural properties. Thus, it was established that at elevated temperature the R(15x3) superstructure controls the self-assembly of sub-monolayer amounts of Au into nm-wide nanostripes. Based on the results of core level photoemission, the R(15x3)-induced surface alloying which takes place between Au and W can be claimed as driving force of self-organization. The observed stripes exhibit a characteristic one-dimensional electronic structure with laterally quantized d-bands. Obviously, these are very important for applications, since dimensions of electronic devices have already stepped into the nm-range, where quantum-size phenomena must undoubtedly be considered. Moreover, formation of perfectly uniform molecular clusters of C60 was demonstrated and described in terms of the van der Waals formalism. It is the first experimental observation of two-dimensional fullerene nanoclusters with "magic numbers". Calculations of the cluster potentials using the static approach have revealed characteristic minima in the interaction energy. They are achieved for 4 and 7 molecules per cluster. The obtained "magic numbers" and the corresponding cluster structures are fully consistent with the results of the STM measurements.}, subject = {Nanostruktur}, language = {en} } @phdthesis{Kubowicz2005, author = {Kubowicz, Stephan}, title = {Design and characterization of multicompartment micelles in aqueous solution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5752}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Self-assembly of polymeric building blocks is a powerful tool for the design of novel materials and structures that combine different properties and may respond to external stimuli. In the past decades, most studies were focused on the self-assembly of amphiphilic diblock copolymers in solution. The dissolution of these block copolymers in a solvent selective for one block results mostly in the formation of micelles. The micellar structure of diblock copolymers is inherently limited to a homogeneous core surrounded by a corona, which keeps the micelle in solution. Thus, for drug-delivery applications, such structures only offer a single domain (the hydrophobic inner core) for drug entrapment. Whereas multicompartment micelles composed of a water-soluble shell and a segregated hydrophobic core are novel, interesting morphologies for applications in a variety of fields including medicine, pharmacy and biotechnology. The separated incompatible compartments of the hydrophobic core could enable the selective entrapment and release of various hydrophobic drugs while the hydrophilic shell would permit the stabilization of these nanostructures in physiological media. However, so far, the preparation and control of stable multicompartment micellar systems are in the first stages and the number of morphological studies concerning such micelles is rather low. Thus considerably little is known about their exact inner structures. In the present study, we concentrate on four different approaches for the preparation of multicompartment micelles by self-assembly in aqueous media. A similarity of all approaches was that hydrocarbon and fluorocarbon blocks were selected for all employed copolymers since such segments tend to be strongly incompatible, and thus favor the segregation into distinct domains. Our studies have shown that the self-assembly of the utilized copolymers in aqueous solution leads in three cases to the formation of multicompartment micelles. As expected the shape and size of the micelles depend on the molecular architecture and to some extent also on the way of preparation. These novel structured colloids may serve as models as well as mimics for biological structures such as globular proteins, and may open interesting opportunities for nanotechnology applications.}, subject = {Amphiphile Verbindungen}, language = {en} } @phdthesis{Schwager2005, author = {Schwager, Monika}, title = {Climate change, variable colony sizes and temporal autocorrelation : consequences of living in changing environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5744}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Natural and human induced environmental changes affect populations at different time scales. If they occur in a spatial heterogeneous way, they cause spatial variation in abundance. In this thesis I addressed three topics, all related to the question, how environmental changes influence population dynamics. In the first part, I analysed the effect of positive temporal autocorrelation in environmental noise on the extinction risk of a population, using a simple population model. The effect of autocorrelation depended on the magnitude of the effect of single catastrophic events of bad environmental conditions on a population. If a population was threatened by extinction only, when bad conditions occurred repeatedly, positive autocorrelation increased extinction risk. If a population could become extinct, even if bad conditions occurred only once, positive autocorrelation decreased extinction risk. These opposing effects could be explained by two features of an autocorrelated time series. On the one hand, positive autocorrelation increased the probability of series of bad environmental conditions, implying a negative effect on populations. On the other hand, aggregation of bad years also implied longer periods with relatively good conditions. Therefore, for a given time period, the overall probability of occurrence of at least one extremely bad year was reduced in autocorrelated noise. This can imply a positive effect on populations. The results could solve a contradiction in the literature, where opposing effects of autocorrelated noise were found in very similar population models. In the second part, I compared two approaches, which are commonly used for predicting effects of climate change on future abundance and distribution of species: a "space for time approach", where predictions are based on the geographic pattern of current abundance in relation to climate, and a "population modelling approach" which is based on correlations between demographic parameters and the inter-annual variation of climate. In this case study, I compared the two approaches for predicting the effect of a shift in mean precipitation on a population of the sociable weaver Philetairus socius, a common colonially living passerine bird of semiarid savannahs of southern Africa. In the space for time approach, I compared abundance and population structure of the sociable weaver in two areas with highly different mean annual precipitation. The analysis showed no difference between the two populations. This result, as well as the wide distribution range of the species, would lead to the prediction of no sensitive response of the species to a slight shift in mean precipitation. In contrast, the population modelling approach, based on a correlation between reproductive success and rainfall, predicted a sensitive response in most model types. The inconsistency of predictions was confirmed in a cross-validation between the two approaches. I concluded that the inconsistency was caused, because the two approaches reflect different time scales. On a short time scale, the population may respond sensitively to rainfall. However, on a long time scale, or in a regional comparison, the response may be compensated or buffered by a variety of mechanisms. These may include behavioural or life history adaptations, shifts in the interactions with other species, or differences in the physical environment. The study implies that understanding, how such mechanisms work, and at what time scale they would follow climate change, is a crucial precondition for predicting ecological consequences of climate change. In the third part of the thesis, I tested why colony sizes of the sociable weaver are highly variable. The high variation of colony sizes is surprising, as in studies on coloniality it is often assumed that an optimal colony size exists, in which individual bird fitness is maximized. Following this assumption, the pattern of bird dispersal should keep colony sizes near an optimum. However, I showed by analysing data on reproductive success and survival that for the sociable weaver fitness in relation to colony size did not follow an optimum curve. Instead, positive and negative effects of living in large colonies overlaid each other in a way that fitness was generally close to one, and density dependence was low. I showed in a population model, which included an evolutionary optimisation process of dispersal that this specific shape of the fitness function could lead to a dispersal strategy, where the variation of colony sizes was maintained.}, subject = {Populationsbiologie}, language = {en} } @phdthesis{Ziehe2005, author = {Ziehe, Andreas}, title = {Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5694}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {This thesis is concerned with the solution of the blind source separation problem (BSS). The BSS problem occurs frequently in various scientific and technical applications. In essence, it consists in separating meaningful underlying components out of a mixture of a multitude of superimposed signals. In the recent research literature there are two related approaches to the BSS problem: The first is known as Independent Component Analysis (ICA), where the goal is to transform the data such that the components become as independent as possible. The second is based on the notion of diagonality of certain characteristic matrices derived from the data. Here the goal is to transform the matrices such that they become as diagonal as possible. In this thesis we study the latter method of approximate joint diagonalization (AJD) to achieve a solution of the BSS problem. After an introduction to the general setting, the thesis provides an overview on particular choices for the set of target matrices that can be used for BSS by joint diagonalization. As the main contribution of the thesis, new algorithms for approximate joint diagonalization of several matrices with non-orthogonal transformations are developed. These newly developed algorithms will be tested on synthetic benchmark datasets and compared to other previous diagonalization algorithms. Applications of the BSS methods to biomedical signal processing are discussed and exemplified with real-life data sets of multi-channel biomagnetic recordings.}, subject = {Signaltrennung}, language = {en} } @phdthesis{Koelsch2005, author = {K{\"o}lsch, Patrick}, title = {Static and dynamic properties of soluble surfactants at the air/water interface}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5716}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Amphiphilic molecules contain a hydrophilic headgroup and a hydrophobic tail. The headgroup is polar or ionic and likes water, the tail is typically an aliphatic chain that cannot be accommodated in a polar environment. The prevailing molecular asymmetry leads to a spontaneous adsorption of amphiphiles at the air/water or oil/water interfaces. As a result, the surface tension and the surface rheology is changed. Amphiphiles are important tools to deliberately modify the interfacial properties of liquid interfaces and enable new phenomena such as foams which cannot be formed in a pure liquid. In this thesis we investigate the static and dynamic properties of adsorption layers of soluble amphiphiles at the air/water interface, the so called Gibbs monolayers. The classical way for an investigation of these systems is based on a thermodynamic analysis of the equilibrium surface tension as a function of the bulk composition in the framework of Gibbs theory. However, thermodynamics does not provide any structural information and several recent publications challenge even fundamental text book concepts. The experimental investigation faces difficulties imposed by the low surface coverage and the presence of dissolved amphiphiles in the adjacent bulk phase. In this thesis we used a suite of techniques with the sensitivity to detect less than a monolayer of molecules at the air-water interface. Some of these techniques are extremely complex such as infrared visible sum frequency generation (IR-VIS SFG) spectroscopy or second harmonic generation (SHG). Others are traditional techniques, such as ellipsometry employed in new ways and pushed to new limits. Each technique probes selectively different parts of the interface and the combination provides a profound picture of the interfacial architecture. The first part of the thesis is dedicated to the distribution of ions at interfaces. Adsorption layers of ionic amphiphiles serve as model systems allowing to produce a defined surface charge. The charge of the monolayer is compensated by the counterions. As a result of a complex zoo of interactions there will be a defined distribution of ions at the interface, however, its experimental determination is a big scientific challenge. We could demonstrate that a combination of linear and nonlinear techniques gives direct insights in the prevailing ion distribution. Our investigations reveal specific ion effects which cannot be described by classical Poisson-Boltzmann mean field type theories. Adsorption layer and bulk phase are in thermodynamic equilibrium, however, it is important to stress that there is a constant molecular exchange between adsorbed and dissolved species. This exchange process is a key element for the understanding of some of the thermodynamic properties. An excellent way to study Gibbs monolayers is to follow the relaxation from a non-equilibrium to an equilibrium state. Upon compression amphiphiles must leave the adsorption layer and dissolve in the adjacent bulk phase. Upon expansion amphiphiles must adsorb at the interface to restore the equilibrium coverage. Obviously the frequency of the expansion and compression cycles must match the molecular exchange processes. At too low frequencies the equilibrium is maintained at all times. If the frequency is too fast the system behaves as a monolayer of insoluble surfactants. In this thesis we describe an unique variant of an oscillating bubble technique that measures precisely the real and imaginary part of the complex dilational modulus E in a frequency range up to 500 Hz. The extension of about two decades in the time domain in comparison to the conventional method of an oscillating drop is a tremendous achievement. The imaginary part of the complex dilational modulus E is a consequence of a dissipative process which is interpreted as an intrinsic surface dilational viscosity. The IR-VIS SFG spectra of the interfacial water provide a molecular interpretation of the underlying dissipative process.}, subject = {Nichtlineare Optik}, language = {en} } @phdthesis{Mellinger2004, author = {Mellinger, Axel}, title = {Charge storage in electret polymers: mechanisms, characterization and applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5689}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Electrets are materials capable of storing oriented dipoles or an electric surplus charge for long periods of time. The term "electret" was coined by Oliver Heaviside in analogy to the well-known word "magnet". Initially regarded as a mere scientific curiosity, electrets became increasingly imporant for applications during the second half of the 20th century. The most famous example is the electret condenser microphone, developed in 1962 by Sessler and West. Today, these devices are produced in annual quantities of more than 1 billion, and have become indispensable in modern communications technology. Even though space-charge electrets are widely used in transducer applications, relatively little was known about the microscopic mechanisms of charge storage. It was generally accepted that the surplus charges are stored in some form of physical or chemical traps. However, trap depths of less than 2 eV, obtained via thermally stimulated discharge experiments, conflicted with the observed lifetimes (extrapolations of experimental data yielded more than 100000 years). Using a combination of photostimulated discharge spectroscopy and simultaneous depth-profiling of the space-charge density, the present work shows for the first time that at least part of the space charge in, e.g., polytetrafluoroethylene, polypropylene and polyethylene terephthalate is stored in traps with depths of up to 6 eV, indicating major local structural changes. Based on this information, more efficient charge-storing materials could be developed in the future. The new experimental results could only be obtained after several techniques for characterizing the electrical, electromechanical and electrical properties of electrets had been enhanced with in situ capability. For instance, real-time information on space-charge depth-profiles were obtained by subjecting a polymer film to short laser-induced heat pulses. The high data acquisition speed of this technique also allowed the three-dimensional mapping of polarization and space-charge distributions. A highly active field of research is the development of piezoelectric sensor films from electret polymer foams. These materials store charges on the inner surfaces of the voids after having been subjected to a corona discharge, and exhibit piezoelectric properties far superior to those of traditional ferroelectric polymers. By means of dielectric resonance spectroscopy, polypropylene foams (presently the most widely used ferroelectret) were studied with respect to their thermal and UV stability. Their limited thermal stability renders them unsuitable for applications above 50 °C. Using a solvent-based foaming technique, we found an alternative material based on amorphous Teflon® AF, which exhibits a stable piezoelectric coefficient of 600 pC/N at temperatures up to 120 °C.}, subject = {Elektret}, language = {en} } @phdthesis{Kriegler2005, author = {Kriegler, Elmar}, title = {Imprecise probability analysis for integrated assessment of climate change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5611}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {We present an application of imprecise probability theory to the quantification of uncertainty in the integrated assessment of climate change. Our work is motivated by the fact that uncertainty about climate change is pervasive, and therefore requires a thorough treatment in the integrated assessment process. Classical probability theory faces some severe difficulties in this respect, since it cannot capture very poor states of information in a satisfactory manner. A more general framework is provided by imprecise probability theory, which offers a similarly firm evidential and behavioural foundation, while at the same time allowing to capture more diverse states of information. An imprecise probability describes the information in terms of lower and upper bounds on probability. For the purpose of our imprecise probability analysis, we construct a diffusion ocean energy balance climate model that parameterises the global mean temperature response to secular trends in the radiative forcing in terms of climate sensitivity and effective vertical ocean heat diffusivity. We compare the model behaviour to the 20th century temperature record in order to derive a likelihood function for these two parameters and the forcing strength of anthropogenic sulphate aerosols. Results show a strong positive correlation between climate sensitivity and ocean heat diffusivity, and between climate sensitivity and absolute strength of the sulphate forcing. We identify two suitable imprecise probability classes for an efficient representation of the uncertainty about the climate model parameters and provide an algorithm to construct a belief function for the prior parameter uncertainty from a set of probability constraints that can be deduced from the literature or observational data. For the purpose of updating the prior with the likelihood function, we establish a methodological framework that allows us to perform the updating procedure efficiently for two different updating rules: Dempster's rule of conditioning and the Generalised Bayes' rule. Dempster's rule yields a posterior belief function in good qualitative agreement with previous studies that tried to constrain climate sensitivity and sulphate aerosol cooling. In contrast, we are not able to produce meaningful imprecise posterior probability bounds from the application of the Generalised Bayes' Rule. We can attribute this result mainly to our choice of representing the prior uncertainty by a belief function. We project the Dempster-updated belief function for the climate model parameters onto estimates of future global mean temperature change under several emissions scenarios for the 21st century, and several long-term stabilisation policies. Within the limitations of our analysis we find that it requires a stringent stabilisation level of around 450 ppm carbon dioxide equivalent concentration to obtain a non-negligible lower probability of limiting the warming to 2 degrees Celsius. We discuss several frameworks of decision-making under ambiguity and show that they can lead to a variety of, possibly imprecise, climate policy recommendations. We find, however, that poor states of information do not necessarily impede a useful policy advice. We conclude that imprecise probabilities constitute indeed a promising candidate for the adequate treatment of uncertainty in the integrated assessment of climate change. We have constructed prior belief functions that allow much weaker assumptions on the prior state of information than a prior probability would require and, nevertheless, can be propagated through the entire assessment process. As a caveat, the updating issue needs further investigation. Belief functions constitute only a sensible choice for the prior uncertainty representation if more restrictive updating rules than the Generalised Bayes'Rule are available.}, subject = {Anthropogene Klima{\"a}nderung}, language = {en} } @phdthesis{Erdmann2005, author = {Erdmann, Thorsten}, title = {Stochastic dynamics of adhesion clusters under force}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5564}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Adhesion of biological cells to their environment is mediated by two-dimensional clusters of specific adhesion molecules which are assembled in the plasma membrane of the cells. Due to the activity of the cells or external influences, these adhesion sites are usually subject to physical forces. In recent years, the influence of such forces on the stability of cellular adhesion clusters was increasingly investigated. In particular, experimental methods that were originally designed for the investigation of single bond rupture under force have been applied to investigate the rupture of adhesion clusters. The transition from single to multiple bonds, however, is not trivial and requires theoretical modelling. Rupture of biological adhesion molecules is a thermally activated, stochastic process. In this work, a stochastic model for the rupture and rebinding dynamics of clusters of parallel adhesion molecules under force is presented. In particular, the influence of (i) a constant force as it may be assumed for cellular adhesion clusters is investigated and (ii) the influence of a linearly increasing force as commonly used in experiments is considered. Special attention is paid to the force-mediated cooperativity of parallel adhesion bonds. Finally, the influence of a finite distance between receptors and ligands on the binding dynamics is investigated. Thereby, the distance can be bridged by polymeric linker molecules which tether the ligands to a substrate.}, subject = {Biophysik}, language = {en} } @misc{Schiller2004, type = {Master Thesis}, author = {Schiller, Beate}, title = {Between afrocentrism and universality : detective fiction by black women}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5478}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {This paper focuses on mysteries written by the Afro-American women authors Barbara Neely and Valerie Wilson Wesley. Both authors place a black woman in the role of the detective - an innovative feature not only in the realm of female detective literature of the past two decades but also with regard to the current discourse about race and class in US-American society. This discourse is important because detective novels are considered popular literature and thus a mass product designed to favor commercial instead of literary claims. Thus, the focus is placed on the development of the two protagonists, on their lives as detectives and as black women, in order to find out whether or not and how the genre influences the depiction of Afro-American experiences. It appears that both of these detective series represent Afro-American culture in different ways, which confirms a heterogenic development of this ethnic group. However, the protagonist's search for identity and their relationships to white people could be identified as a major unifying claim of Afro-American literature. With differing intensity, the authors Neely and Wesley provide the white or mainstream reader with insight into their culture and confront the reader\&\#39;s ignorance of black culture. In light of this, it is a great achievement that Neely and Wesley have reached not only a black audience but also a growing number of white readers.}, subject = {black women's literature}, language = {en} }