@article{BrinkmannBeckerZimmermannetal.2022, author = {Brinkmann, Kai Oliver and Becker, Tim and Zimmermann, Florian and Kreusel, Cedric and Gahlmann, Tobias and Theisen, Manuel and Haeger, Tobias and Olthof, Selina and T{\"u}ckmantel, Christian and G{\"u}nster, M. and Maschwitz, Timo and G{\"o}belsmann, Fabian and Koch, Christine and Hertel, Dirk and Caprioglio, Pietro and Pe{\~n}a-Camargo, Francisco and Perdig{\´o}n-Toro, Lorena and Al-Ashouri, Amran and Merten, Lena and Hinderhofer, Alexander and Gomell, Leonie and Zhang, Siyuan and Schreiber, Frank and Albrecht, Steve and Meerholz, Klaus and Neher, Dieter and Stolterfoht, Martin and Riedl, Thomas}, title = {Perovskite-organic tandem solar cells with indium oxide interconnect}, series = {Nature}, volume = {604}, journal = {Nature}, number = {7905}, publisher = {Nature Research}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-022-04455-0}, pages = {280 -- 286}, year = {2022}, abstract = {Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures(1). Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported(2-5). Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells(6,7). Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (V-oc) of wide-gap perovskite cells(8) and losses introduced by the interconnect between the subcells(9,10). Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high V-oc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high V-oc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells(11), show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions(12) and are on a par with perovskite-CIGS and all-perovskite multijunctions(13).}, language = {en} } @article{ZapataArteagaMarinaZuoetal.2022, author = {Zapata-Arteaga, Osnat and Marina, Sara and Zuo, Guangzheng and Xu, Kai and D{\"o}rling, Bernhard and Alberto P{\´e}rez, Luis and Sebasti{\´a}n Reparaz, Juan and Mart{\´i}n, Jaime and Kemerink, Martijn and Campoy-Quiles, Mariano}, title = {Design rules for polymer blends with high thermoelectric performance}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202104076}, pages = {11}, year = {2022}, abstract = {A combinatorial study of the effect of in-mixing of various guests on the thermoelectric properties of the host workhorse polymer poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) is presented. Specifically, the composition and thickness for doped films of PBTTT blended with different polymers are varied. Some blends at guest weight fractions around 10-15\% exhibit up to a fivefold increase in power factor compared to the reference material, leading to zT values around 0.1. Spectroscopic analysis of the charge-transfer species, structural characterization using grazing-incidence wide-angle X-ray scattering, differential scanning calorimetry, Raman, and atomic force microscopy, and Monte Carlo simulations are employed to determine that the key to improved performance is for the guest to promote long-range electrical connectivity and low disorder, together with similar highest occupied molecular orbital levels for both materials in order to ensure electronic connectivity are combined.}, language = {en} } @article{NiederhoferCioniSchmidtetal.2022, author = {Niederhofer, Florian and Cioni, Maria-Rosa L. and Schmidt, Thomas and Bekki, Kenji and de Grijs, Richard and Ivanov, Valentin D. and Oliveira, Joana M. and Ripepi, Vincenzo and Subramanian, Smitha and van Loon, Jacco Th}, title = {The VMC survey - XLVI. Stellar proper motions in the centre of the Large Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac712}, pages = {5423 -- 5439}, year = {2022}, abstract = {We present proper motion (PM) measurements within the central region of the Large Magellanic Cloud (LMC), using near-infrared data from the VISTA survey of the Magellanic Cloud system (VMC). This work encompasses 18 VMC tiles covering a total sky area of similar to 28 deg(2). We computed absolute stellar PMs from multiepoch observations in the K-s filter over time baselines between similar to 12 and 47 months. Our final catalogue contains similar to 6322 000 likely LMC member stars with derived PMs. We employed a simple flat-rotating disc model to analyse and interpret the PM data. We found a stellar centre of rotation (alpha(0) = 79.95 degrees(+0.22)(-0.23), delta(0) = -69.31 degrees(+0.12)(-0.11)) that is in agreement with that resulting from Hubble Space Telescope data. The inferred viewing angles of the LMC disc (i = 33.5 degrees(+1.2)(-1.3), Theta = 129.8 degrees(+1.9)(-1.9)) are in good agreement with values from the literature but suggest a higher inclination of the central parts of the LMC. Our data confirm a higher rotation amplitude for the young (less than or similar to 0.5 Gyr) stars compared to the intermediate-age/old (greater than or similar to 1 Gyr) population, which can be explained by asymmetric drift. We constructed spatially resolved velocity maps of the intermediate-age/old and young populations. Intermediate-age/old stars follow elongated orbits parallel to the bar's major axis, providing first observational evidence for x(1) orbits within the LMC bar. In the innermost regions, the motions show more chaotic structures. Young stars show motions along a central filamentary bar structure.}, language = {en} } @article{AlvaradoGomezCohenDrakeetal.2022, author = {Alvarado-G{\´o}mez, Juli{\´a}n D. and Cohen, Ofer and Drake, Jeremy J. and Fraschetti, Federico and Poppenh{\"a}ger, Katja and Garraffo, Cecilia and Chebly, Judy and Ilin, Ekaterina and Harbach, Laura and Kochukhov, Oleg}, title = {Simulating the space weather in the AU Mic system: stellar winds and extreme coronal mass ejections}, series = {Astrophysical journal}, volume = {928}, journal = {Astrophysical journal}, number = {2}, publisher = {IOP Publishing}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac54b8}, pages = {12}, year = {2022}, abstract = {Two close-in planets have been recently found around the M-dwarf flare star AU Microscopii (AU Mic). These Neptune-sized planets (AU Mic b and c) seem to be located very close to the so-called "evaporation valley" in the exoplanet population, making this system an important target for studying atmospheric loss on exoplanets. This process, while mainly driven by high-energy stellar radiation, will be strongly mediated by the space environment surrounding the planets. Here we present an investigation of this last area, performing 3D numerical modeling of the quiescent stellar wind from AU Mic, as well as time-dependent simulations describing the evolution of a highly energetic coronal mass ejection (CME) event in this system. Observational constraints on the stellar magnetic field and properties of the eruption are incorporated in our models. We carry out qualitative and quantitative characterizations of the stellar wind, the emerging CMEs, as well as the expected steady and transient conditions along the orbit of both exoplanets. Our results predict extreme space weather for AU Mic and its planets. This includes sub-Alfvenic regions for the large majority of the exoplanet orbits, very high dynamic and magnetic pressure values in quiescence (varying within 10(2)-10(5) times the dynamic pressure experienced by Earth), and an even harsher environment during the passage of any escaping CME associated with the frequent flaring observed in AU Mic. These space weather conditions alone pose an immense challenge for the survival of exoplanetary atmospheres (if any) in this system.}, language = {en} } @article{HovhannisyanNematiHenkeletal.2023, author = {Hovhannisyan, Karen V. and Nemati, Somayyeh and Henkel, Carsten and Anders, Janet}, title = {Long-time equilibration can determine transient thermality}, series = {PRX Quantum}, volume = {4}, journal = {PRX Quantum}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2691-3399}, doi = {10.1103/PRXQuantum.4.030321}, pages = {23}, year = {2023}, abstract = {When two initially thermal many-body systems start to interact strongly, their transient states quickly become non-Gibbsian, even if the systems eventually equilibrate. To see beyond this apparent lack of structure during the transient regime, we use a refined notion of thermality, which we call g-local. A system is g-locally thermal if the states of all its small subsystems are marginals of global thermal states. We numerically demonstrate for two harmonic lattices that whenever the total system equilibrates in the long run, each lattice remains g-locally thermal at all times, including the transient regime. This is true even when the lattices have long-range interactions within them. In all cases, we find that the equilibrium is described by the generalized Gibbs ensemble, with three-dimensional lattices requiring special treatment due to their extended set of conserved charges. We compare our findings with the well-known two-temperature model. While its standard form is not valid beyond weak coupling, we show that at strong coupling it can be partially salvaged by adopting the concept of a g-local temperature.}, language = {en} } @article{MeyerPohlPetrovetal.2023, author = {Meyer, Dominique M.-A. and Pohl, Martin and Petrov, M. and Egberts, Kathrin}, title = {Mixing of materials in magnetized core-collapse supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {521}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stad906}, pages = {5354 -- 5371}, year = {2023}, abstract = {Core-collapse supernova remnants are structures of the interstellar medium (ISM) left behind the explosive death of most massive stars ( ?40 M-?). Since they result in the expansion of the supernova shock wave into the gaseous environment shaped by the star's wind history, their morphology constitutes an insight into the past evolution of their progenitor star. Particularly, fast-mo ving massiv e stars can produce asymmetric core-collapse superno va remnants. We inv estigate the mixing of materials in core-collapse supernova remnants generated by a moving massive 35 M-? star, in a magnetized ISM. Stellar rotation and the wind magnetic field are time-dependently included into the models which follow the entire evolution of the stellar surroundings from the zero-age main-sequence to 80 kyr after the supernova explosion. It is found that very little main-sequence material is present in remnants from moving stars, that the Wolf-Rayet wind mixes very efficiently within the 10 kyr after the explosion, while the red supergiant material is still unmixed by 30 per cent within 50 kyr after the supernova. Our results indicate that the faster the stellar motion, the more complex the internal organization of the supernova remnant and the more ef fecti ve the mixing of ejecta therein. In contrast, the mixing of stellar wind material is only weakly affected by progenitor motion, if at all.}, language = {en} } @article{MatternvonReppertZeuschneretal.2023, author = {Mattern, Maximilian and von Reppert, Alexander and Zeuschner, Steffen Peer and Herzog, Marc and Pudell, Jan-Etienne and Bargheer, Matias}, title = {Concepts and use cases for picosecond ultrasonics with x-rays}, series = {Photoacoustics}, volume = {31}, journal = {Photoacoustics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-5979}, doi = {10.1016/j.pacs.2023.100503}, pages = {22}, year = {2023}, abstract = {This review discusses picosecond ultrasonics experiments using ultrashort hard x-ray probe pulses to extract the transient strain response of laser-excited nanoscopic structures from Bragg-peak shifts. This method provides direct, layer-specific, and quantitative information on the picosecond strain response for structures down to few-nm thickness. We model the transient strain using the elastic wave equation and express the driving stress using Gruneisen parameters stating that the laser-induced stress is proportional to energy density changes in the microscopic subsystems of the solid, i.e., electrons, phonons and spins. The laser-driven strain response can thus serve as an ultrafast proxy for local energy-density and temperature changes, but we emphasize the importance of the nanoscale morphology for an accurate interpretation due to the Poisson effect. The presented experimental use cases encompass ultrathin and opaque metal-heterostructures, continuous and granular nanolayers as well as negative thermal expansion materials, that each pose a challenge to established all-optical techniques.}, language = {en} } @article{GeistGallagherKotullaetal.2022, author = {Geist, Emily and Gallagher, John S. and Kotulla, Ralf and Oskinova, Lida and Hamann, Wolf-Rainer and Ramachandran, Varsha and Sabbi, Elena and Smith, Linda J. and Kniazev, Alexey and Nota, Antonella and Rickard, Matthew J.}, title = {Ionization and star formation in the giant H ii region SMC-N66}, series = {Publications of the Astronomical Society of the Pacific}, volume = {134}, journal = {Publications of the Astronomical Society of the Pacific}, number = {1036}, publisher = {IOP Publishing}, address = {Bristol}, issn = {0004-6280}, doi = {10.1088/1538-3873/ac697b}, pages = {11}, year = {2022}, abstract = {The NGC 346 young stellar system and associated N66 giant H ii region in the Small Magellanic Cloud are the nearest example of a massive star-forming event in a low metallicity (Z approximate to 0.2Z (circle dot)) galaxy. With an age of less than or similar to 3 Myr this system provides a unique opportunity to study relationships between massive stars and their associated H ii region. Using archival data, we derive a total H alpha luminosity of L(H alpha) = 4.1 x 10(38) erg s(-1) corresponding to an H-photoionization rate of 3 x 10(50) s(-1). A comparison with a predicted stellar ionization rate derived from the more than 50 known O-stars in NGC 346, including massive stars recently classified from Hubble Space Telescope far-ultraviolet (FUV) spectra, indicates an approximate ionization balance. Spectra obtained with SALT suggest the ionization structure of N66 could be consistent with some leakage of ionizing photons. Due to the low metallicity, the FUV luminosity from NGC 346 is not confined to the interstellar cloud associated with N66. Ionization extends through much of the spatial extent of the N66 cloud complex, and most of the cloud mass is not ionized. The stellar mass estimated from nebular L(H alpha) appears to be lower than masses derived from the census of resolved stars which may indicate a disconnect between the formation of high and low mass stars in this region. We briefly discuss implications of the properties of N66 for studies of star formation and stellar feedback in low metallicity environments.}, language = {en} } @article{PerottoniLimbergAmaranteetal.2022, author = {Perottoni, H{\´e}lio D. and Limberg, Guilherme and Amarante, Jo{\~a}o A. S. and Rossi, Silvia and Queiroz, Anna B. A. and Santucci, Rafael M. and P{\´e}rez-Villegas, Angeles and Chiappini, Cristina}, title = {The unmixed debris of Gaia-Sausage/Enceladus in the form of a pair of halo stellar overdensities}, series = {Astrophysical journal letters}, volume = {936}, journal = {Astrophysical journal letters}, number = {1}, publisher = {IOP Publishing}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ac88d6}, pages = {7}, year = {2022}, abstract = {In the first billion years after its formation, the galaxy underwent several mergers with dwarf satellites of various masses. The debris of Gaia-Sausage/Enceladus (GSE), the galaxy responsible for the last significant merger of the Milky Way, dominates the inner halo and has been suggested to be the progenitor of both the Hercules-Aquila Cloud (HAC) and Virgo Overdensity (VOD). We combine SEGUE, APOGEE, Gaia, and StarHorse distances to characterize the chemodynamical properties and verify the link between HAC, VOD, and GSE. We find that the orbital eccentricity distributions of the stellar overdensities and GSE are comparable. We also find that they have similar, strongly peaked, metallicity distribution functions, reinforcing the hypothesis of common origin. Furthermore, we show that HAC and VOD are indistinguishable from the prototypical GSE population within all chemical-abundance spaces analyzed. All these evidences combined provide a clear demonstration that the GSE merger is the main progenitor of the stellar populations found within these halo overdensities.}, language = {en} } @article{PranavHultzschMusiienkoetal.2023, author = {Pranav, Manasi and Hultzsch, Thomas and Musiienko, Artem and Sun, Bowen and Shukla, Atul and Jaiser, Frank and Shoaee, Safa and Neher, Dieter}, title = {Anticorrelated photoluminescence and free charge generation proves field-assisted exciton dissociation in low-offset PM6:Y5 organic solar cells}, series = {APL materials : high impact open access journal in functional materials science}, volume = {11}, journal = {APL materials : high impact open access journal in functional materials science}, number = {6}, publisher = {AIP Publishing}, address = {Melville}, issn = {2166-532X}, doi = {10.1063/5.0151580}, pages = {8}, year = {2023}, abstract = {Understanding the origin of inefficient photocurrent generation in organic solar cells with low energy offset remains key to realizing high-performance donor-acceptor systems. Here, we probe the origin of field-dependent free-charge generation and photoluminescence in wnon-fullereneacceptor (NFA)-based organic solar cells using the polymer PM6 and the NFA Y5-a non-halogenated sibling to Y6, with a smaller energetic offset to PM6. By performing time-delayed collection field (TDCF) measurements on a variety of samples with different electron transport layers and active layer thickness, we show that the fill factor and photocurrent are limited by field-dependent free charge generation in the bulk of the blend. We also introduce a new method of TDCF called m-TDCF to prove the absence of artifacts from non-geminate recombination of photogenerated and dark charge carriers near the electrodes. We then correlate free charge generation with steady-state photoluminescence intensity and find perfect anticorrelation between these two properties. Through this, we conclude that photocurrent generation in this low-offset system is entirely controlled by the field-dependent dissociation of local excitons into charge-transfer states. (c) 2023 Author(s).}, language = {en} }