@phdthesis{Cao2014, author = {Cao, Xianyong}, title = {Vegetation and climate change in eastern continental Asia during the last 22 ka inferred from pollen data synthesis}, pages = {156}, year = {2014}, language = {en} } @phdthesis{Sarkar2014, author = {Sarkar, Saswati}, title = {Holocene variations in the strength of the Indian Monsoon system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74905}, school = {Universit{\"a}t Potsdam}, pages = {ix, 114}, year = {2014}, abstract = {The monsoon is an important component of the Earth's climate system. It played a vital role in the development and sustenance of the largely agro-based economy in India. A better understanding of past variations in the Indian Summer Monsoon (ISM) is necessary to assess its nature under global warming scenarios. Instead, our knowledge of spatiotemporal patterns of past ISM strength, as inferred from proxy records, is limited due to the lack of high-resolution paleo-hydrological records from the core monsoon domain. In this thesis I aim to improve our understanding of Holocene ISM variability from the core 'monsoon zone' (CMZ) in India. To achieve this goal, I tried to understand modern and thereafter reconstruct Holocene monsoonal hydrology, by studying surface sediments and a high-resolution sedimentary record from the saline-alkaline Lonar crater lake, central India. My approach relies on analyzing stable carbon and hydrogen isotope ratios from sedimentary lipid biomarkers to track past hydrological changes. In order to evaluate the relationship of the modern ecosystem and hydrology of the lake I studied the distribution of lipid biomarkers in the modern ecosystem and compared it to lake surface sediments. The major plants from dry deciduous mixed forest type produced a greater amount of leaf wax n-alkanes and a greater fraction of n-C31 and n-C33 alkanes relative to n-C27 and n-C29. Relatively high average chain length (ACL) values (29.6-32.8) for these plants seem common for vegetation from an arid and warm climate. Additionally I found that human influence and subsequent nutrient supply result in increased lake primary productivity, leading to an unusually high concentration of tetrahymanol, a biomarker for salinity and water column stratification, in the nearshore sediments. Due to this inhomogeneous deposition of tetrahymanol in modern sediments, I hypothesize that lake level fluctuation may potentially affect aquatic lipid biomarker distributions in lacustrine sediments, in addition to source changes. I reconstructed centennial-scale hydrological variability associated with changes in the intensity of the ISM based on a record of leaf wax and aquatic biomarkers and their stable carbon (δ13C) and hydrogen (δD) isotopic composition from a 10 m long sediment core from the lake. I identified three main periods of distinct hydrology over the Holocene in central India. The period between 10.1 and 6 cal. ka BP was likely the wettest during the Holocene. Lower ACL index values (29.4 to 28.6) of leaf wax n-alkanes and their negative δ13C values (-34.8 per mille to -27.8 per mille) indicated the dominance of woody C3 vegetation in the catchment, and negative δDwax (average for leaf wax n-alkanes) values (-171 per mille to -147 per mille) argue for a wet period due to an intensified monsoon. After 6 cal. ka BP, a gradual shift to less negative δ13C values (particularly for the grass derived n-C31) and appearance of the triterpene lipid tetrahymanol, generally considered as a marker for salinity and water column stratification, marked the onset of drier conditions. At 5.1 cal. ka BP increasing flux of leaf wax n-alkanes along with the highest flux of tetrahymanol indicated proximity of the lakeshore to the center due to a major lake level decrease. Rapid fluctuations in abundance of both terrestrial and aquatic biomarkers between 4.8 and 4 cal. ka BP indicated an unstable lake ecosystem, culminating in a transition to arid conditions. A pronounced shift to less negative δ13C values, in particular for n-C31 (-25.2 per mille to -22.8 per mille), over this period indicated a change of dominant vegetation to C4 grasses. Along with a 40 per mille increase in leaf wax n-alkane δD values, which likely resulted from less rainfall and/or higher plant evapotranspiration, I interpret this period to reflect the driest conditions in the region during the last 10.1 ka. This transition led to protracted late Holocene arid conditions and the establishment of a permanently saline lake. This is supported by the high abundance of tetrahymanol. A late Holocene peak of cyanobacterial biomarker input at 1.3 cal. ka BP might represent an event of lake eutrophication, possibly due to human impact and the onset of cattle/livestock farming in the catchment. The most intriguing feature of the mid-Holocene driest period was the high amplitude and rapid fluctuations in δDwax values, probably due to a change in the moisture source and/or precipitation seasonality. I hypothesize that orbital induced weakening of the summer solar insolation and associated reorganization of the general atmospheric circulation were responsible for an unstable hydroclimate in the mid-Holocene in the CMZ. My findings shed light onto the sequence of changes during mean state changes of the monsoonal system, once an insolation driven threshold has been passed, and show that small changes in solar insolation can be associated to major environmental changes and large fluctuations in moisture source, a scenario that may be relevant with respect to future changes in the ISM system.}, language = {en} } @phdthesis{Borchardt2014, author = {Borchardt, Sven}, title = {Rainfall, weathering and erosion}, pages = {x, 90}, year = {2014}, language = {en} } @phdthesis{Feld2014, author = {Feld, Christian}, title = {Crustal structure of the Eratosthenes Seamount, Cyprus and S. Turkey from an amphibian wide-angle seismic profile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73479}, school = {Universit{\"a}t Potsdam}, pages = {xi, 131}, year = {2014}, abstract = {In March 2010, the project CoCoCo (incipient COntinent-COntinent COllision) recorded a 650 km long amphibian N-S wide-angle seismic profile, extending from the Eratosthenes Seamount (ESM) across Cyprus and southern Turkey to the Anatolian plateau. The aim of the project is to reveal the impact of the transition from subduction to continent-continent collision of the African plate with the Cyprus-Anatolian plate. A visual quality check, frequency analysis and filtering were applied to the seismic data and reveal a good data quality. Subsequent first break picking, finite-differences ray tracing and inversion of the offshore wide-angle data leads to a first-arrival tomographic model. This model reveals (1) P-wave velocities lower than 6.5 km/s in the crust, (2) a variable crustal thickness of about 28 - 37 km and (3) an upper crustal reflection at 5 km depth beneath the ESM. Two land shots on Turkey, also recorded on Cyprus, airgun shots south of Cyprus and geological and previous seismic investigations provide the information to derive a layered velocity model beneath the Anatolian plateau and for the ophiolite complex on Cyprus. The analysis of the reflections provides evidence for a north-dipping plate subducting beneath Cyprus. The main features of this layered velocity model are (1) an upper and lower crust with large lateral changes of the velocity structure and thickness, (2) a Moho depth of about 38 - 45 km beneath the Anatolian plateau, (3) a shallow north-dipping subducting plate below Cyprus with an increasing dip and (4) a typical ophiolite sequence on Cyprus with a total thickness of about 12 km. The offshore-onshore seismic data complete and improve the information about the velocity structure beneath Cyprus and the deeper part of the offshore tomographic model. Thus, the wide-angle seismic data provide detailed insights into the 2-D geometry and velocity structures of the uplifted and overriding Cyprus-Anatolian plate. Subsequent gravity modelling confirms and extends the crustal P-wave velocity model. The deeper part of the subducting plate is constrained by the gravity data and has a dip angle of ~ 28°. Finally, an integrated analysis of the geophysical and geological information allows a comprehensive interpretation of the crustal structure related to the collision process.}, language = {en} } @phdthesis{Tympel2014, author = {Tympel, Jens G{\"u}nter}, title = {Numerical modeling of the Cenozoic Pamir-Tien Shan orogeny}, pages = {168}, year = {2014}, language = {en} } @phdthesis{Munack2014, author = {Munack, Henry}, title = {From phantom blocks to denudational noise}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-72629}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 172}, year = {2014}, abstract = {Knowing the rates and mechanisms of geomorphic process that shape the Earth's surface is crucial to understand landscape evolution. Modern methods for estimating denudation rates enable us to quantitatively express and compare processes of landscape downwearing that can be traced through time and space—from the seemingly intact, though intensely shattered, phantom blocks of the catastrophically fragmented basal facies of giant rockslides up to denudational noise in orogen-wide data sets averaging over several millennia. This great variety of spatiotemporal scales of denudation rates is both boon and bane of geomorphic process rates. Indeed, processes of landscape downwearing can be traced far back in time, helping us to understand the Earth's evolution. Yet, this benefit may turn into a drawback due to scaling issues if these rates are to be compared across different observation timescales. This thesis investigates the mechanisms, patterns and rates of landscape downwearing across the Himalaya-Tibet orogen. Accounting for the spatiotemporal variability of denudation processes, this thesis addresses landscape downwearing on three distinctly different spatial scales, starting off at the local scale of individual hillslopes where considerable amounts of debris are generated from rock instantaneously: Rocksliding in active mountains is a major impetus of landscape downwearing. Study I provides a systematic overview of the internal sedimentology of giant rockslide deposits and thus meets the challenge of distinguishing them from macroscopically and microscopically similar glacial deposits, tectonic fault-zone breccias, and impact breccias. This distinction is important to avoid erroneous or misleading deduction of paleoclimatic or tectonic implications. -> Grain size analysis shows that rockslide-derived micro-breccia closely resemble those from meteorite impact or tectonic faults. -> Frictionite may occur more frequently that previously assumed. -> M{\"o}ssbauer-spectroscopy derived results indicate basal rock melting in the absence of water, involving short-term temperatures of >1500°C. Zooming out, Study II tracks the fate of these sediments, using the example of the upper Indus River, NW India. There we use river sand samples from the Indus and its tributaries to estimate basin-averaged denudation rates along a ~320-km reach across the Tibetan Plateau margin, to answer the question whether incision into the western Tibetan Plateau margin is currently active or not. -> We find an about one-order-of-magnitude upstream decay—from 110 to 10 mm kyr^-1—of cosmogenic Be-10-derived basin-wide denudation rates across the morphological knickpoint that marks the transition from the Transhimalayan ranges to the Tibetan Plateau. This trend is corroborated by independent bulk petrographic and heavy mineral analysis of the same samples. -> From the observation that tributary-derived basin-wide denudation rates do not increase markedly until ~150-200 km downstream of the topographic plateau margin we conclude that incision into the Tibetan Plateau is inactive. -> Comparing our postglacial Be-10-derived denudation rates to long-term (>10^6 yr) estimates from low-temperature thermochronometry, ranging from 100 to 750 mm kyr^-1, points to an order- of-magnitude decay of rates of landscape downwearing towards present. We infer that denudation rates must have been higher in the Quaternary, probably promoted by the interplay of glacial and interglacial stages. Our investigation of regional denudation patterns in the upper Indus finally is an integral part of Study III that synthesizes denudation of the Himalaya-Tibet orogen. In order to identify general and time-invariant predictors for Be-10-derived denudation rates we analyze tectonic, climatic and topographic metrics from an inventory of 297 drainage basins from various parts of the orogen. Aiming to get insight to the full response distributions of denudation rate to tectonic, climatic and topographic candidate predictors, we apply quantile regression instead of ordinary least squares regression, which has been standard analysis tool in previous studies that looked for denudation rate predictors. -> We use principal component analysis to reduce our set of 26 candidate predictors, ending up with just three out of these: Aridity Index, topographic steepness index, and precipitation of the coldest quarter of the year. -> Topographic steepness index proves to perform best during additive quantile regression. Our consequent prediction of denudation rates on the basin scale involves prediction errors that remain between 5 and 10 mm kyr^-1. -> We conclude that while topographic metrics such as river-channel steepness and slope gradient—being representative on timescales that our cosmogenic Be-10-derived denudation rates integrate over—generally appear to be more suited as predictors than climatic and tectonic metrics based on decadal records.}, language = {en} } @phdthesis{Sayago2014, author = {Sayago, Jhosnella}, title = {Late Paleozoic basin analysis of the Loppa High and Finnmark Platform in the Norwegian Barents Sea : integration of seismic attributes and seismic sequence stratigraphy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72576}, school = {Universit{\"a}t Potsdam}, pages = {viii, 109}, year = {2014}, abstract = {The subsurface upper Palaeozoic sedimentary successions of the Loppa High half-graben and the Finnmark platform in the Norwegian Barents Sea (southwest Barents Sea) were investigated using 2D/3D seismic datasets combined with well and core data. These sedimentary successions represent a case of mixed siliciclastic-carbonates depositional systems, which formed during the earliest phase of the Atlantic rifting between Greenland and Norway. During the Carboniferous and Permian the southwest part of the Barents Sea was located along the northern margin of Pangaea, which experienced a northward drift at a speed of ~2-3 mm per year. This gradual shift in the paleolatitudinal position is reflected by changes in regional climatic conditions: from warm-humid in the early Carboniferous, changing to warm-arid in the middle to late Carboniferous and finally to colder conditions in the late Permian. Such changes in paleolatitude and climate have resulted in major changes in the style of sedimentation including variations in the type of carbonate factories. The upper Palaeozoic sedimentary succession is composed of four major depositional units comprising chronologically the Billefjorden Group dominated by siliciclastic deposition in extensional tectonic-controlled wedges, the Gipsdalen Group dominated by warm-water carbonates, stacked buildups and evaporites, the Bjarmeland Group characterized by cool-water carbonates as well as by the presence of buildup networks, and the Tempelfjorden Group characterized by fine-grained sedimentation dominated by biological silica production. In the Loppa High, the integration of a core study with multi-attribute seismic facies classification allowed highlighting the main sedimentary unconformities and mapping the spatial extent of a buried paleokarst terrain. This geological feature is interpreted to have formed during a protracted episode of subaerial exposure occurring between the late Palaeozoic and middle Triassic. Based on seismic sequence stratigraphy analysis the palaeogeography in time and space of the Loppa High basin was furthermore reconstructed and a new and more detailed tectono-sedimentary model for this area was proposed. In the Finnmark platform area, a detailed core analysis of two main exploration wells combined with key 2D seismic sections located along the main depositional profile, allowed the evaluation of depositional scenarios for the two main lithostratigraphic units: the {\O}rn Formation (Gipsdalen Group) and the Isbj{\o}rn Formation (Bjarmeland Group). During the mid-Sakmarian, two major changes were observed between the two formations including (1) the variation in the type of the carbonate factories, which is interpreted to be depth-controlled and (2) the change in platform morphology, which evolved from a distally steepened ramp to a homoclinal ramp. The results of this study may help supporting future reservoirs characterization of the upper Palaeozoic units in the Barents Sea, particularly in the Loppa High half-graben and the Finmmark platform area.}, language = {en} } @phdthesis{Schollaen2014, author = {Schollaen, Karina}, title = {Tracking climate signals in tropical trees}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71947}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {The tropical warm pool waters surrounding Indonesia are one of the equatorial heat and moisture sources that are considered as a driving force of the global climate system. The climate in Indonesia is dominated by the equatorial monsoon system, and has been linked to El Ni{\~n}o-Southern Oscillation (ENSO) events, which often result in severe droughts or floods over Indonesia with profound societal and economic impacts on the populations living in the world's fourth most populated country. The latest IPCC report states that ENSO will remain the dominant mode in the tropical Pacific with global effects in the 21st century and ENSO-related precipitation extremes will intensify. However, no common agreement exists among climate simulation models for projected change in ENSO and the Australian-Indonesian Monsoon. Exploring high-resolution palaeoclimate archives, like tree rings or varved lake sediments, provide insights into the natural climate variability of the past, and thus helps improving and validating simulations of future climate changes. Centennial tree-ring stable isotope records | Within this doctoral thesis the main goal was to explore the potential of tropical tree rings to record climate signals and to use them as palaeoclimate proxies. In detail, stable carbon (δ13C) and oxygen (δ18O) isotopes were extracted from teak trees in order to establish the first well-replicated centennial (AD 1900-2007) stable isotope records for Java, Indonesia. Furthermore, different climatic variables were tested whether they show significant correlation with tree-ring proxies (ring-width, δ13C, δ18O). Moreover, highly resolved intra-annual oxygen isotope data were established to assess the transfer of the seasonal precipitation signal into the tree rings. Finally, the established oxygen isotope record was used to reveal possible correlations with ENSO events. Methodological achievements | A second goal of this thesis was to assess the applicability of novel techniques which facilitate and optimize high-resolution and high-throughput stable isotope analysis of tree rings. Two different UV-laser-based microscopic dissection systems were evaluated as a novel sampling tool for high-resolution stable isotope analysis. Furthermore, an improved procedure of tree-ring dissection from thin cellulose laths for stable isotope analysis was designed. The most important findings of this thesis are: I) The herein presented novel sampling techniques improve stable isotope analyses for tree-ring studies in terms of precision, efficiency and quality. The UV-laser-based microdissection serve as a valuable tool for sampling plant tissue at ultrahigh-resolution and for unprecedented precision. II) A guideline for a modified method of cellulose extraction from wholewood cross-sections and subsequent tree-ring dissection was established. The novel technique optimizes the stable isotope analysis process in two ways: faster and high-throughput cellulose extraction and precise tree-ring separation at annual to high-resolution scale. III) The centennial tree-ring stable isotope records reveal significant correlation with regional precipitation. High-resolution stable oxygen values, furthermore, allow distinguishing between dry and rainy season rainfall. IV) The δ18O record reveals significant correlation with different ENSO flavors and demonstrates the importance of considering ENSO flavors when interpreting palaeoclimatic data in the tropics. The findings of my dissertation show that seasonally resolved δ18O records from Indonesian teak trees are a valuable proxy for multi-centennial reconstructions of regional precipitation variability (monsoon signals) and large-scale ocean-atmosphere phenomena (ENSO) for the Indo-Pacific region. Furthermore, the novel methodological achievements offer many unexplored avenues for multidisciplinary research in high-resolution palaeoclimatology.}, language = {en} } @phdthesis{Bach2013, author = {Bach, Christoph}, title = {Improving statistical seismicity models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70591}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Several mechanisms are proposed to be part of the earthquake triggering process, including static stress interactions and dynamic stress transfer. Significant differences of these mechanisms are particularly expected in the spatial distribution of aftershocks. However, testing the different hypotheses is challenging because it requires the consideration of the large uncertainties involved in stress calculations as well as the appropriate consideration of secondary aftershock triggering which is related to stress changes induced by smaller pre- and aftershocks. In order to evaluate the forecast capability of different mechanisms, I take the effect of smaller--magnitude earthquakes into account by using the epidemic type aftershock sequence (ETAS) model where the spatial probability distribution of direct aftershocks, if available, is correlated to alternative source information and mechanisms. Surface shaking, rupture geometry, and slip distributions are tested. As an approximation of the shaking level, ShakeMaps are used which are available in near real-time after a mainshock and thus could be used for first-order forecasts of the spatial aftershock distribution. Alternatively, the use of empirical decay laws related to minimum fault distance is tested and Coulomb stress change calculations based on published and random slip models. For comparison, the likelihood values of the different model combinations are analyzed in the case of several well-known aftershock sequences (1992 Landers, 1999 Hector Mine, 2004 Parkfield). The tests show that the fault geometry is the most valuable information for improving aftershock forecasts. Furthermore, they reveal that static stress maps can additionally improve the forecasts of off--fault aftershock locations, while the integration of ground shaking data could not upgrade the results significantly. In the second part of this work, I focused on a procedure to test the information content of inverted slip models. This allows to quantify the information gain if this kind of data is included in aftershock forecasts. For this purpose, the ETAS model based on static stress changes, which is introduced in part one, is applied. The forecast ability of the models is systematically tested for several earthquake sequences and compared to models using random slip distributions. The influence of subfault resolution and segment strike and dip is tested. Some of the tested slip models perform very good, in that cases almost no random slip models are found to perform better. Contrastingly, for some of the published slip models, almost all random slip models perform better than the published slip model. Choosing a different subfault resolution hardly influences the result, as long the general slip pattern is still reproducible. Whereas different strike and dip values strongly influence the results depending on the standard deviation chosen, which is applied in the process of randomly selecting the strike and dip values.}, language = {en} } @phdthesis{Bathke2014, author = {Bathke, Hannes}, title = {An investigation of complex deformation patterns detected by using InSAR at Llaima and Tend{\"u}rek volcanoes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70522}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Surface displacement at volcanic edifices is related to subsurface processes associated with magma movements, fluid transfers within the volcano edifice and gravity-driven deformation processes. Understanding of associated ground displacements is of importance for assessment of volcanic hazards. For example, volcanic unrest is often preceded by surface uplift, caused by magma intrusion and followed by subsidence, after the withdrawal of magma. Continuous monitoring of the surface displacement at volcanoes therefore might allow the forecasting of upcoming eruptions to some extent. In geophysics, the measured surface displacements allow the parameters of possible deformation sources to be estimated through analytical or numerical modeling. This is one way to improve the understanding of subsurface processes acting at volcanoes. Although the monitoring of volcanoes has significantly improved in the last decades (in terms of technical advancements and number of monitored volcanoes), the forecasting of volcanic eruptions remains puzzling. In this work I contribute towards the understanding of the subsurface processes at volcanoes and thus to the improvement of volcano eruption forecasting. I have investigated the displacement field of Llaima volcano in Chile and of Tend{\"u}rek volcano in East Turkey by using synthetic aperture radar interferometry (InSAR). Through modeling of the deformation sources with the extracted displacement data, it was possible to gain insights into potential subsurface processes occurring at these two volcanoes that had been barely studied before. The two volcanoes, although of very different origin, composition and geometry, both show a complexity of interacting deformation sources. At Llaima volcano, the InSAR technique was difficult to apply, due to the large decorrelation of the radar signal between the acquisition of images. I developed a model-based unwrapping scheme, which allows the production of reliable displacement maps at the volcano that I used for deformation source modeling. The modeling results show significant differences in pre- and post-eruptive magmatic deformation source parameters. Therefore, I conjecture that two magma chambers exist below Llaima volcano: a post-eruptive deep one and a shallow one possibly due to the pre-eruptive ascent of magma. Similar reservoir depths at Llaima have been confirmed by independent petrologic studies. These reservoirs are interpreted to be temporally coupled. At Tend{\"u}rek volcano I have found long-term subsidence of the volcanic edifice, which can be described by a large, magmatic, sill-like source that is subject to cooling contraction. The displacement data in conjunction with high-resolution optical images, however, reveal arcuate fractures at the eastern and western flank of the volcano. These are most likely the surface expressions of concentric ring-faults around the volcanic edifice that show low magnitudes of slip over a long time. This might be an alternative mechanism for the development of large caldera structures, which are so far assumed to be generated during large catastrophic collapse events. To investigate the potential subsurface geometry and relation of the two proposed interacting sources at Tend{\"u}rek, a sill-like magmatic source and ring-faults, I have performed a more sophisticated numerical modeling approach. The optimum source geometries show, that the size of the sill-like source was overestimated in the simple models and that it is difficult to determine the dip angle of the ring-faults with surface displacement data only. However, considering physical and geological criteria a combination of outward-dipping reverse faults in the west and inward-dipping normal faults in the east seem to be the most likely. Consequently, the underground structure at the Tend{\"u}rek volcano consists of a small, sill-like, contracting, magmatic source below the western summit crater that causes a trapdoor-like faulting along the ring-faults around the volcanic edifice. Therefore, the magmatic source and the ring-faults are also interpreted to be temporally coupled. In addition, a method for data reduction has been improved. The modeling of subsurface deformation sources requires only a relatively small number of well distributed InSAR observations at the earth's surface. Satellite radar images, however, consist of several millions of these observations. Therefore, the large amount of data needs to be reduced by several orders of magnitude for source modeling, to save computation time and increase model flexibility. I have introduced a model-based subsampling approach in particular for heterogeneously-distributed observations. It allows a fast calculation of the data error variance-covariance matrix, also supports the modeling of time dependent displacement data and is, therefore, an alternative to existing methods.}, language = {en} }