@misc{FernandezPalominoHattermannKrysanovaetal.2020, author = {Fernandez-Palomino, Carlos Antonio and Hattermann, Fred and Krysanova, Valentina and Vega-Jacome, Fiorella and Bronstert, Axel}, title = {Towards a more consistent eco-hydrological modelling through multi-objective calibration}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-56876}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568766}, pages = {18}, year = {2020}, abstract = {Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography.}, language = {en} } @misc{OzturkPittoreBehlingetal.2020, author = {Ozturk, Ugur and Pittore, Massimiliano and Behling, Robert and R{\"o}ßner, Sigrid and Andreani, Louis and Korup, Oliver}, title = {How robust are landslide susceptibility estimates?}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-54198}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541980}, pages = {17}, year = {2020}, abstract = {Much of contemporary landslide research is concerned with predicting and mapping susceptibility to slope failure. Many studies rely on generalised linear models with environmental predictors that are trained with data collected from within and outside of the margins of mapped landslides. Whether and how the performance of these models depends on sample size, location, or time remains largely untested. We address this question by exploring the sensitivity of a multivariate logistic regression-one of the most widely used susceptibility models-to data sampled from different portions of landslides in two independent inventories (i.e. a historic and a multi-temporal) covering parts of the eastern rim of the Fergana Basin, Kyrgyzstan. We find that considering only areas on lower parts of landslides, and hence most likely their deposits, can improve the model performance by >10\% over the reference case that uses the entire landslide areas, especially for landslides of intermediate size. Hence, using landslide toe areas may suffice for this particular model and come in useful where landslide scars are vague or hidden in this part of Central Asia. The model performance marginally varied after progressively updating and adding more landslides data through time. We conclude that landslide susceptibility estimates for the study area remain largely insensitive to changes in data over about a decade. Spatial or temporal stratified sampling contributes only minor variations to model performance. Our findings call for more extensive testing of the concept of dynamic susceptibility and its interpretation in data-driven models, especially within the broader framework of landslide risk assessment under environmental and land-use change.}, language = {en} } @article{FernandezPalominoHattermannKrysanovaetal.2020, author = {Fernandez-Palomino, Carlos Antonio and Hattermann, Fred and Krysanova, Valentina and Vega-Jacome, Fiorella and Bronstert, Axel}, title = {Towards a more consistent eco-hydrological modelling through multi-objective calibration}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {66}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2020.1846740}, pages = {59 -- 74}, year = {2020}, abstract = {Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography.}, language = {en} } @misc{CoesfeldKuesterKuechlyetal.2020, author = {Coesfeld, Jacqueline and Kuester, Theres and Kuechly, Helga U. and Kyba, Christopher C. M.}, title = {Reducing variability and removing natural light from nighttime satellite imagery: A case study using the VIIRS DNB}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {11}, issn = {1866-8372}, doi = {10.25932/publishup-52439}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524397}, pages = {15}, year = {2020}, abstract = {Temporal variation of natural light sources such as airglow limits the ability of night light sensors to detect changes in small sources of artificial light (such as villages). This study presents a method for correcting for this effect globally, using the satellite radiance detected from regions without artificial light emissions. We developed a routine to define an approximate grid of locations worldwide that do not have regular light emission. We apply this method with a 5 degree equally spaced global grid (total of 2016 individual locations), using data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB). This code could easily be adapted for other future global sensors. The correction reduces the standard deviation of data in the Earth Observation Group monthly DNB composites by almost a factor of two. The code and datasets presented here are available under an open license by GFZ Data Services, and are implemented in the Radiance Light Trends web application.}, language = {en} } @article{CoesfeldKuesterKuechlyetal.2020, author = {Coesfeld, Jacqueline and Kuester, Theres and Kuechly, Helga U. and Kyba, Christopher C. M.}, title = {Reducing variability and removing natural light from nighttime satellite imagery: A case study using the VIIRS DNB}, series = {Sensors}, volume = {20}, journal = {Sensors}, publisher = {MDPI}, address = {Basel}, pages = {13}, year = {2020}, abstract = {Temporal variation of natural light sources such as airglow limits the ability of night light sensors to detect changes in small sources of artificial light (such as villages). This study presents a method for correcting for this effect globally, using the satellite radiance detected from regions without artificial light emissions. We developed a routine to define an approximate grid of locations worldwide that do not have regular light emission. We apply this method with a 5 degree equally spaced global grid (total of 2016 individual locations), using data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB). This code could easily be adapted for other future global sensors. The correction reduces the standard deviation of data in the Earth Observation Group monthly DNB composites by almost a factor of two. The code and datasets presented here are available under an open license by GFZ Data Services, and are implemented in the Radiance Light Trends web application.}, language = {en} } @phdthesis{Purinton2020, author = {Purinton, Benjamin}, title = {Remote sensing applications to earth surface processes in the Eastern Central Andes}, doi = {10.25932/publishup-44592}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445926}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2020}, abstract = {Geomorphology seeks to characterize the forms, rates, and magnitudes of sediment and water transport that sculpt landscapes. This is generally referred to as earth surface processes, which incorporates the influence of biologic (e.g., vegetation), climatic (e.g., rainfall), and tectonic (e.g., mountain uplift) factors in dictating the transport of water and eroded material. In mountains, high relief and steep slopes combine with strong gradients in rainfall and vegetation to create dynamic expressions of earth surface processes. This same rugged topography presents challenges in data collection and process measurement, where traditional techniques involving detailed observations or physical sampling are difficult to apply at the scale of entire catchments. Herein lies the utility of remote sensing. Remote sensing is defined as any measurement that does not disturb the natural environment, typically via acquisition of images in the visible- to radio-wavelength range of the electromagnetic spectrum. Remote sensing is an especially attractive option for measuring earth surface processes, because large areal measurements can be acquired at much lower cost and effort than traditional methods. These measurements cover not only topographic form, but also climatic and environmental metrics, which are all intertwined in the study of earth surface processes. This dissertation uses remote sensing data ranging from handheld camera-based photo surveying to spaceborne satellite observations to measure the expressions, rates, and magnitudes of earth surface processes in high-mountain catchments of the Eastern Central Andes in Northwest Argentina. This work probes the limits and caveats of remote sensing data and techniques applied to geomorphic research questions, and presents important progress at this disciplinary intersection.}, language = {en} }