@article{KroenerAlexeievKovachetal.2017, author = {Kr{\"o}ner, A. and Alexeiev, D. V. and Kovach, V. P. and Rojas-Agramonte, Y. and Tretyakov, A. A. and Mikolaichuk, A. V. and Xie, H. and Sobel, Edward}, title = {Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3-1.8 Ga Kuilyu Complex, East Kyrgyzstan}, series = {Journal of Asian earth sciences}, volume = {135}, journal = {Journal of Asian earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2016.12.022}, pages = {122 -- 135}, year = {2017}, abstract = {Precambrian microcontinents represent key tectonic units in the accretionary collages of the western Central Asian Orogenic Belt (CAOB), and their geological history is reasonably well established since the Mesoproterozoic but remains weakly constrained for older epochs due to a scarcity of exposed Palaeoproterozoic and Archaean rocks. Early Precambrian rocks were previously reported from several metamorphic complexes in the Kyrgyz Tianshan orogenic belt, mainly based on multigrain conventional zircon dating, but the present study only confirmed such rocks at one site, namely in the Kuilyu Complex of eastern Kyrgyzstan. New single grain SHRIMP II zircon ages, geochemical data, and whole-rock Nd isotopic compositions for granitoid gneisses of the Kuilyu Complex elucidate the age, origin and tectonic settings of this oldest continental fragment in the Tianshan. The Kuilyu Complex is part of the basement in the Ishim - Middle Tianshan microcontinent. It consist of a strongly deformed and metamorphosed supracrustal assemblage of paragneisses and schists which are tectonically interlayered with amphibolites, migmatites and granitoid gneisses. Our zircon dating indicates that the Kuilyu Complex contains two suites of Palaeoproterozoic granitoid gneisses with magmatic protolith ages of ca. 2.32-2.33 Ga and 1.85 Ga. Granitoid magmatism at 1.85 Ga was almost immediately followed by amphibolite-facies metamorphism at ca 1.83 Ga, evidenced by growth of metamorphic zircon rims. The older, ca 2.3 Ga granitoid gneisses chemically correspond to calc-alkaline, metaluminous, I-type magnesian quartz diorite and granodiorite. The protolith of the younger, ca. 1.85 Ga granite-gneiss is an alkalic-calcic, metaluminous to peraluminous, ferroan medium-grained porphyric granite with chemical features resembling A-type granites. The 2.3 Ga and 1.85 Ga granitoid gneisses have slightly to distinctly negative initial epsilon(Nd) values of -1.2 and -6.6, and similar depleted mantle Nd model ages of 2.7-2.6 Ga, which imply melting of Neoarchaean continental crust. The zircon age patterns of the Kuilyu Complex resemble those of exposed rocks in the Tarim Craton, where episodes of granitoid magmatism at ca. 2.3-2.4 and 1.85 Ga, followed by amphibolite-facies metamorphism at ca 1.85 Ga, are also recorded. Similarities in the early Precambrian magmatic and metamorphic episodes as well as similar histories during the Neoproterozoic and early Palaeozoic suggest that the Ishim-Middle Tianshan microcontinent was rifted off the Tarim Craton. Similar age patterns also suggest possible tectonic links of the Kuilyu and Tarim continental blocks with the Baidrag Block of central Mongolia. In contrast, substantial differences in age and Precambrian evolution between the Anrakhai block of southern Kazakhstan and the Kuilyu Complex argue against a previous connection and suggest the former to represent an independent continental terrane. Current data show that early Precambrian rocks in the western CAOB outside Tarim only occur at two sites, namely in the Anrakhai Complex of southern Kazakhstan and in the Kuilyu Complex of eastern Kyrgyzstan. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KroenerO'BrienNemchinetal.2000, author = {Kr{\"o}ner, Alfred and O'Brien, Patrick J. and Nemchin, A. A. and Pidgeon, R. T.}, title = {Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes}, year = {2000}, language = {en} } @article{Scherbaum1997, author = {Scherbaum, Frank}, title = {Zero Phase FIR filters in digital seismic acquisition systems : blessing or curse}, year = {1997}, language = {en} } @article{Kuntke1998, author = {Kuntke, M.}, title = {Zeitbudgets von Kormoranen (Phalacrocorax carbo sinensis) bez{\"u}glich der Nahrungsversorgung der Jungv{\"o}gel}, year = {1998}, language = {de} } @article{WilkePartzschFarges2004, author = {Wilke, Max and Partzsch, G. M. and Farges, Francois}, title = {XAFS of iron in silicate melt at high temperature}, issn = {0024-4937}, year = {2004}, language = {en} } @article{KetenogluSpiekermannHarderetal.2018, author = {Ketenoglu, Didem and Spiekermann, Georg and Harder, Manuel and Oz, Erdinc and Koz, Cevriye and Yagci, Mehmet C. and Yilmaz, Eda and Yin, Zhong and Sahle, Christoph J. and Detlefs, Blanka and Yavas, Hasan}, title = {X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell}, series = {Journal of synchrotron radiation}, volume = {25}, journal = {Journal of synchrotron radiation}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {0909-0495}, doi = {10.1107/S1600577518001662}, pages = {537 -- 542}, year = {2018}, abstract = {The effects of varying LiPF6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ ion concentration in the solvent manifests itself as a blue-shift of both the pi* feature in the carbon edge and the carbonyl pi* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.}, language = {en} } @article{Wilke2018, author = {Wilke, Max}, title = {X-Ray Absorption Spectroscopy Measurements}, series = {Magmas Under Pressure : Advances in High-Pressure Experiments on Structure and Properties of Melts}, journal = {Magmas Under Pressure : Advances in High-Pressure Experiments on Structure and Properties of Melts}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-811274-8}, doi = {10.1016/B978-0-12-811301-1.00006-X}, pages = {155 -- 178}, year = {2018}, abstract = {An overview is given on the current state of X-ray absorption measurements on silicate melts and glasses. The challenges, limitations, and achievements of analyzing X-ray absorption spectra measured in liquids to determine structural properties of major and minor elements in magmas are described, with particular focus on describing non-Gaussian pair distribution functions in highly disordered glasses and melts, measured at in situ conditions. This includes a discussion on the progress of combining experiments with data from molecular dynamics simulations. For the measurements at conditions of the deep Earth, various experimental approaches and necessities are discussed and two examples are described in more detail. Finally, the achievements and prospects are presented for measuring X-ray absorption spectra indirectly by X-ray Raman scattering.}, language = {en} } @article{AshastinaKuzminaRudayaetal.2018, author = {Ashastina, Kseniia and Kuzmina, Svetlana and Rudaya, Natalia and Troeva, Elena I. and Schoch, Werner H. and Roemermann, Christine and Reinecke, Jennifer and Otte, Volker and Savvinov, Grigoriy and Wesche, Karsten and Kienast, Frank}, title = {Woodlands and steppes}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {196}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2018.07.032}, pages = {38 -- 61}, year = {2018}, abstract = {Based on fossil organism remains including plant macrofossils, charcoal, pollen, and invertebrates preserved in syngenetic deposits of the Batagay permafrost sequence in the Siberian Yana Highlands, we reconstructed the environmental history during marine isotope stages (MIS) 6 to 2. Two fossil assemblages, exceptionally rich in plant remains, allowed for a detailed description of the palaeo-vegetation during two climate extremes of the Late Pleistocene, the onset of the last glacial maximum (LGM) and the last interglacial. In addition, altogether 41 assemblages were used to outline the vegetation history since the penultimate cold stage of MIS 6. Accordingly, meadow steppes analogue to modern communities of the phytosociological order Festucetalia lenensis formed the primary vegetation during the Saalian and Weichselian cold stages. Cold-resistant tundra-steppe communities (Carici rupestris-Kobresietea bellardii) as they occur above the treeline today were, in contrast to more northern locations, mostly lacking. During the last interglacial, open coniferous woodland similar to modern larch taiga was the primary vegetation at the site. Abundant charcoal indicates wildfire events during the last interglacial. Zoogenic disturbances of the local vegetation were indicated by the presence of ruderal plants, especially by abundant Urtica dioica, suggesting that the area was an interglacial refugium for large herbivores. Meadow steppes, which formed the primary vegetation during cold stages and provided potentially suitable pastures for herbivores, were a significant constituent of the plant cover in the Yana Highlands also under the full warm stage conditions of the last interglacial. Consequently, meadow steppes occurred in the Yana Highlands during the entire investigated timespan from MIS 6 to MIS 2 documenting a remarkable environmental stability. Thus, the proportion of meadow steppe vegetation merely shifted in response to the respectively prevailing climatic conditions. Their persistence indicates low precipitation and a relatively warm growing season throughout and beyond the late Pleistocene. The studied fossil record also proves that modern steppe occurrences in the Yana Highlands did not establish as late as in the Holocene but instead are relicts of a formerly continuous steppe belt extending from Central Siberia to Northeast Yakutia during the Pleistocene. The persistence of plants and invertebrates characteristic of meadow steppe vegetation in interior Yakutia throughout the late Quaternary indicates climatic continuity and documents the suitability of this region as a refugium also for other organisms of the Pleistocene mammoth steppe including the iconic large herbivores. (C)2018 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Nada2011, author = {Nada, Wael Mohamed Abdel-Rahman}, title = {Wood compost process engineering, properties and its impact on extreme soil characteristics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51046}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The landfilling of biodegradable waste is proven to contribute to environmental degradation. Much wood and lumber is discharged as waste from the cleared fields. These woody wastes are subsequently disposed of by burning. However, it would be preferable to dispose of them without combustion to avoid the release of carbon dioxide, one of the critical greenhouse gases. Instead of burning these woody wastes, we should recycle them as future resources. One solution to this problem is to make compost from the waste. Compost use in agriculture is increasing as both an alternative to landfilling for the management of biodegradable waste, as well as means of increasing or preserving soil organic matter. This research aimed to contribute to the identification of a system for managing the production and utilization of wood waste (Quercus rubra and Pinus sylvestris) compost for sustainable agriculture, with particular regards to carbon dioxide produced from both compost and combustion of wood. Compost of wood was implemented in two consecutive trials. The first was carried out in greenhouse experiment in 4 liter pot of Quercus rubra and Pinus sylvestris (QR and PS) moisted by compost and tap water and infected by tiger worm (Eisenia fetida, EF) and European night crawlers (Dendrobaena veneta, DV) at different mixed ratios with lake mud (LM). The second was conducted in greenhouse experiment in 40 liter pot of the successful wood and worm from the first compost trial (QR and EF respectively). The tested wood (QR) was mixed separately by lake mud and horse manure and irrigated by compost and tap water. The final product, successful wood compost (QR) produced from the first trial (4 liter pot) was utilized in different mixed ratios with coal mine tailings (tertiary sand) in greenhouse pot trial to study his effects on improving soil physical and chemical properties and some plant growth parameters of RSM 7.2.1 grass. The wood compost produced from the second compost experiment (40 liter pot) and other artificial component named Arkadolith® were used as soil amelioration in field experiments of different selected sites with extremely unsuitable characteristics (tertiary and quaternary sand in Lusatia lignite region, Germany). The soil in each site was sowed by RSM 7.2.1 and autochthonous grasses. Also, some vermicompost samples were selected to study its thermal stability which compared with a soil sample (Niedermoorgleys) by using thermogravimetric analysis technique. Further investigation was achieved to evaluate the effect of charcoal as a source of carbon on vermicompost stability. Moreover some selected vermicompost samples were used to examine its microstructure under scanning electron microscope which compared also with the same soil used in thermal analysis. The obtained results under all studied experiments can be arranged as follow: First compost trial, Cumulative amount of carbon dioxide produced during composting period was lower than that evolved by combustion of wood. The results showed composting of wood can reduce the emitted CO2 up to 50 \% when compared with the amount of CO2 produced from combustion of wood. The effect of different studied factors on different studied parameters show that, QR wood compost have more responsive to decomposition processes and humification rate in comparison with PS wood compost. Under different infection worms, Eisenia fetida (EF) was better than Dendrobaena veneta (DV) in biodegradation rate. Compost water has had a better impact of tap water in all studied decomposition parameters. For example, The compost content of OM and total OC was decreased with the increase of the decomposition period in the treatments of compost water and EF worm, where this decrease was higher at mixed ratio of 1:3 (wood: mud, w/w). The total content of N in the final products takes reversible trend regarding to OM and C content. The high content of N was found in QR wood compost moisted by compost water and infected by EF worm. The content of both macro-and micro-nutrients was clearly positive affected by the studied factors. The content of these nutrients in QR wood compost was higher than that found in the compost of PS wood. Second compost trial, The observed data show that, the amount of CO2 produced by composting was lower than that evolved by combustion of wood. Composting of wood reduced CO2 emission up to 40 \% of the combustion wood CO2. Cumulative amount of CO2 produced from wood compost treated by horse manure was higher than that fount in the other treated by LM. The compost of wood treated by horse manure has had a high decomposition rate in comparison with that treated by lake mud. The treatments left without worms during all composting period and moisted by compost water have a responsive effects but it was lower than that infected by worms. Total and available contents of N, P, K, Mg, Zn, and Cu in the compost treated by HM were higher than that found in compost treated by LM. The other nutrients (Ca, Fe, Cu, and Mn) take reversible trend, which it was higher in LM than HM treatments. Thermal and microstructure analysis, The selected vermicompost samples from both first and second compost experiments showed, up to 200° C temperature the mass loss was due to free water and bound water (It was in vermicompost samples higher than soil sample). Mass loss from 200 to 550° C is due to easily oxidizable organic forms and it was higher in vermicompost than soil. In this stage the soil OM seems to be more stable than vermicompost which can be explained by a more intensive bond between the organic and inorganic components. At higher temperatures (T> 550° C) no significant detectable was appeared of soil organic matter. In contrast, the vermicompost treatments showed a high proportion of stable groups, especially aromatic compounds. These statements seem to be importance particularly for the practical application of the wood compost in terms of their long-term effect in the soil. The application of charcoal, showed no additional stabilizing effect of vermicompost. Also, the data show that, vermicompost structure characterized with high homogeneity and ratio of surface area to volume compared to those in soil structure. First plant trials (greenhouse), Different compost mixed ratios had positive impact on different extreme soil physiochemical properties. At the end of experiment (42 days) compost increased soil water holding capacity, decreased soil bulk and particle density and increased total porosity. The used wood compost modified soil buffering capacity and soil acidity. The availability of soil macro and micro nutrients were increased after adding wood compost. The wood compost had a positive effect in some growth parameters like fresh and dry matter yield of the selected grass. High dry matter yield and nutrients uptake was achieved with higher rates of compost application (25.0\% > 12.5\% > 3.0\% > 0.0 \%, w/w). Second plant trials (field experiment), Regarding to the effect of wood compost (QR) and Arkadolith® component on tertiary and quaternary sand, at the end of grown season (6 month) most soil and plant characteristics of tertiary sand were improved and it was better than that in quaternary sand. This trend reveals to, physical and chemical properties of tertiary sand was better than that in quaternary sand, like organic matter content, CEC, WHC, TOC, available nutrients. In the both sites, the effects of different type of soil conditioners arranged as follow: the treatments treated with wood compost is the better followed by the other treated with both wood compost and Arkadolith. Wood compost increased soil pH, CEC, soil buffering capacity, OM content, and soil WHC in comparison with Arkadolith which make a small improvement of these properties in both sites. Finally, Different growth parameters (height, covering, fresh and dry matter yield) of the used grasses were clearly positive affected by wood compost, with the highest production inherent to the treatments treated by the high amount of wood compost.}, language = {de} } @article{KorupGoeruemHayakawa2012, author = {Korup, Oliver and G{\"o}r{\"u}m, Tolga and Hayakawa, Yuichi}, title = {Without power? - Landslide inventories in the face of climate change}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {37}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.2248}, pages = {92 -- 99}, year = {2012}, abstract = {Projected scenarios of climate change involve general predictions about the likely changes to the magnitude and frequency of landslides, particularly as a consequence of altered precipitation and temperature regimes. Whether such landslide response to contemporary or past climate change may be captured in differing scaling statistics of landslide size distributions and the erosion rates derived thereof remains debated. We test this notion with simple Monte Carlo and bootstrap simulations of statistical models commonly used to characterize empirical landslide size distributions. Our results show that significant changes to total volumes contained in such inventories may be masked by statistically indistinguishable scaling parameters, critically depending on, among others, the size of the largest of landslides recorded. Conversely, comparable model parameter values may obscure significant, i.e. more than twofold, changes to landslide occurrence, and thus inferred rates of hillslope denudation and sediment delivery to drainage networks. A time series of some of Earth's largest mass movements reveals clustering near and partly before the last glacial-interglacial transition and a distinct step-over from white noise to temporal clustering around this period. However, elucidating whether this is a distinct signal of first-order climate-change impact on slope stability or simply coincides with a transition from short-term statistical noise to long-term steady-state conditions remains an important research challenge.}, language = {en} }