@article{SchottKretzschmarAckeretal.2014, author = {Schott, Juliane and Kretzschmar, Jerome and Acker, Margret and Eidner, Sascha and Kumke, Michael Uwe and Drobot, Bjoern and Barkleit, Astrid and Taut, Steffen and Brendler, Vinzenz and Stumpf, Thorsten}, title = {Formation of a Eu(III) borate solid species from a weak Eu(III) borate complex in aqueous solution}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {43}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {30}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c4dt00843j}, pages = {11516 -- 11528}, year = {2014}, abstract = {In the presence of polyborates (detected by B-11-NMR) the formation of a weak Eu(III) borate complex (lg beta(11) similar to 2, estimated) was observed by time-resolved laser-induced fluorescence spectroscopy (TRLFS). This complex is a precursor for the formation of a solid Eu(III) borate species. The formation of this solid in solution was investigated by TRLFS as a function of the total boron concentration: the lower the total boron concentration, the slower is the solid formation. The solid Eu(III) borate was characterized by IR spectroscopy, powder XRD and solid-state TRLFS. The determination of the europium to boron ratio portends the existence of pentaborate units in the amorphous solid.}, language = {en} } @article{PrimusRitschelSigueenzaetal.2014, author = {Primus, Philipp-Alexander and Ritschel, Thomas and Sigueenza, Pilar Y. and Cauqui, Miguel Angel and Hernandez-Garrido, Juan Carlos and Kumke, Michael Uwe}, title = {High-resolution spectroscopy of europium-doped ceria as a tool to correlate structure and catalytic activity}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {118}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {40}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp505467r}, pages = {23349 -- 23360}, year = {2014}, abstract = {Site-selective emission spectra of Eu3+-doped CeO2 nanoparticles up to the D-5(0) - F-7(5) transition were recorded under cryogenic conditions to identify the local structure around the Eu3+ dopants in ceria. It is found that pretreatment conditions are crucial for the redistribution of dopants from a broad variety of environments to six well-defined lattice sites. The influence of the dopant and the host structure on the catalytic activity was investigated. A relationship between structure and reactivity is discussed. It is shown that oxygen transport is most efficient in particles with a pronounced amorphous character.}, language = {en} } @article{SchwarzeMuellerAstetal.2014, author = {Schwarze, Thomas and M{\"u}ller, Holger and Ast, Sandra and Steinbr{\"u}ck, D{\"o}rte and Eidner, Sascha and Geißler, Felix and Kumke, Michael Uwe and Holdt, Hans-J{\"u}rgen}, title = {Fluorescence lifetime-based sensing of sodium by an optode}, series = {Chemical Communications}, journal = {Chemical Communications}, editor = {Kumke, Michael Uwe}, publisher = {The Royal Society Chemistry}, address = {Cambridge}, issn = {0022-4936}, pages = {14167 -- 14170}, year = {2014}, abstract = {We report a 1,2,3-triazol fluoroionophore for detecting Na+ that shows in vitro enhancement in the Na+-induced fluorescence intensity and decay time. The Na+-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na+ in the range of 1-10 mM by measuring reversible fluorescence decay time changes.}, language = {en} }