@article{WessigMoellnitzKellingetal.2011, author = {Wessig, Pablo and M{\"o}llnitz, Kristian and Kelling, Alexandra and Schilde, Uwe}, title = {Crystal structure of 1r,2c,3c,4t,5t,6t-1,2,3,4,5,6-hexakis-trimethylsilanyloxy-cyclohexane, C24H60O6Si6}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {226}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, number = {2}, publisher = {De Gruyter Oldenbourg}, address = {M{\"u}nchen}, issn = {1433-7266}, doi = {10.1524/ncrs.2011.0105}, pages = {228 -- 230}, year = {2011}, abstract = {C24H60O6Si6, triclinic, P (1) over bar (no. 2), a = 11.307(2) angstrom, b = 12.159(2) angstrom, = 16.576(2) angstrom, alpha = 109.47(1)degrees, beta = 94.64(1)degrees, gamma = 111.65(1)degrees, V = 1942.3 angstrom(3), Z = 2, R-gt(F) = 0.043, wR(ref)(F-2) = 0.118, T = 210 K.}, language = {en} } @article{DavidCoyEnriqueCucaSefkow2011, author = {David Coy, Ericsson and Enrique Cuca, Luis and Sefkow, Michael}, title = {Pd-NHC catalyzed biaryl coupling by direct C-H Activation-A Novel strategy for the synthesis of dibenzocyclooctane lignans}, series = {Synthetic communications : an international journal for rapid communication of synthetic organic chemistry}, volume = {41}, journal = {Synthetic communications : an international journal for rapid communication of synthetic organic chemistry}, number = {1}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {0039-7911}, doi = {10.1080/00397910903531755}, pages = {41 -- 51}, year = {2011}, abstract = {Cross-coupling reactions, such as Buchwald-Hartwig arylamination and direct intramolecular biaryl coupling by C-H activation, were carried out using various Palladium-N-heterocyclic carbenes (Pd-NHC) as catalysts. The yields were good to excellent. The latter strategy was adopted to transform two dibenzylbutane lignans, isolated from the leaves of Ocotea macrophylla (Lauraceae), into the corresponding dibenzocyclooctane lignans in good overall yields. Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications (R) to view the free supplemental file.}, language = {en} } @article{BresselPrevostAppavouetal.2011, author = {Bressel, Katharina and Prevost, Sylvain and Appavou, Marie-Sousai and Tiersch, Brigitte and Koetz, Joachim and Gradzielski, Michael}, title = {Phase behaviour and structure of zwitanionic mixtures of perfluorocarboxylates and tetradecyldimethylamine oxide-dependence on chain length of the perfluoro surfactant}, series = {Soft matter}, volume = {7}, journal = {Soft matter}, number = {23}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c1sm05618b}, pages = {11232 -- 11242}, year = {2011}, abstract = {Phase behaviour and the mesoscopic structure of zwitanionic surfactant mixtures based on the zwitterionic tetradecyldimethylamine oxide (TDMAO) and anionic lithium perfluoroalkyl carboxylates have been investigated for various chain lengths of the perfluoro surfactant with an emphasis on spontaneously forming vesicles. These mixtures were studied at a constant total concentration of 50 mM and characterised by means of dynamic light scattering (DLS), electric conductivity, small-angle neutron scattering (SANS), viscosity, and cryo-scanning electron microscopy (Cryo-SEM). No vesicles are formed for relatively short perfluoro surfactants. The extension of the vesicle phase becomes substantially larger with increasing chain length of the perfluoro surfactant, while at the same time the size of these vesicles increases. Head group interactions in these systems play a central role in the ability to form vesicles, as already protonating 10 mol\% of the TDMAO largely enhances the propensity for vesicle formation. The range of vesicle formation in the phase diagram is not only substantially enlarged but also extends to shorter perfluoro surfactants, where without protonation no vesicles would be formed. The size and polydispersity of the vesicles are related to the chain length of the perfluoro surfactant, the vesicles becoming smaller and more monodisperse with increasing perfluoro surfactant chain length. The ability of the mixed systems to form well-defined unilamellar vesicles accordingly can be controlled by the length of the alkyl chain of the perfluorinated surfactant and depends strongly on the charge conditions, which can be tuned easily by pH-variation.}, language = {en} } @article{WeissBoettcherLaschewsky2011, author = {Weiss, Jan and B{\"o}ttcher, Christoph and Laschewsky, Andr{\´e}}, title = {Self-assembly of double thermoresponsive block copolymers end-capped with complementary trimethylsilyl groups}, series = {Soft matter}, volume = {7}, journal = {Soft matter}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c0sm00531b}, pages = {483 -- 492}, year = {2011}, abstract = {A set of double thermoresponsive diblock copolymers poly(N-n-propylacrylamide)-block-poly(N-ethylacrylamide) (PNPAM-b-PNEAM) was synthesised by sequential reversible addition-fragmentation chain transfer (RAFT) polymerisations. Using a twofold trimethylsilyl (TMS)-labeled RAFT-agent, the relative size of the two blocks was varied. While soluble as unimers below 15 degrees C, all copolymers exhibited thermally induced two-step self-assembly in water, due to distinct lower critical solution temperature (LCST) phase transitions of PNPAM (around 20 degrees C) and PNEAM (around 70 degrees C). Their temperature-dependent self-organisation in dilute aqueous solution was studied by turbidimetry, dynamic light scattering, transmission electron microscopy, and (1)H NMR spectroscopy. The copolymers show distinct, two-step self-organisation behaviour with respect to transition temperatures, aggregate type and size, which can be correlated to the relative lengths of the low and high LCST blocks. For polymers having short blocks with low LCST, the first thermal transition induces the formation of individual micelles. Further heating above the second thermal transition results reversibly either in a shrink of the micelle size or in aggregation of the micelles, with hydrodynamic diameters below 250 nm. In contrast in the case of polymers having a long block with low LCST, the first thermal transition already leads to clusters of micelles, while the second thermal transition makes the clusters shrink. Noteworthy, the twofold TMS-labeled end groups report not only on the molar masses of the polymers, but can simultaneously serve as NMR-probes for the self-assembly process. The signal of the TMS-aryl end group displays a reversible temperature dependent, two-step splitting that is indicative of the self-organisation of the block copolymers.}, language = {en} } @misc{KitaTokarczykJungingerBelegrinouetal.2011, author = {Kita-Tokarczyk, Katarzyna and Junginger, Mathias and Belegrinou, Serena and Taubert, Andreas}, title = {Amphiphilic polymers at interfaces}, series = {Advances in polymer science}, volume = {242}, journal = {Advances in polymer science}, number = {1}, editor = {Muller, AHE and Borisov, O}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-22297-9}, issn = {0065-3195}, doi = {10.1007/12_2010_58}, pages = {151 -- 201}, year = {2011}, abstract = {Self-assembly phenomena in block copolymer systems are attracting considerable interest from the scientific community and industry alike. Particularly interesting is the behavior of amphiphilic copolymers, which can self-organize into nanoscale-sized objects such as micelles, vesicles, or tubes in solution, and which form well-defined assemblies at interfaces such as air-liquid, air-solid, or liquid-solid. Depending on the polymer chemistry and architecture, various types of organization at interfaces can be expected, and further exploited for applications in nanotechnology, electronics, and biomedical sciences. In this article, we discuss the formation and characterization of Langmuir monolayers from various amphiphilic block copolymers, including chargeable and thus pH-responsivematerials. Solid-supported polymer films are reviewed in the context of alteration of surface properties by ultrathin polymer layers and the possibilities for application in tissue engineering, sensors and biomaterials. Finally, we focus on how organic and polymer monolayers influence the growth of inorganic materials. This is a truly biomimetic approach since Nature uses soft interfaces to control the nucleation, growth, and morphology of biominerals such as calcium phosphate, calcium carbonate, and silica.}, language = {en} } @article{AntoniouPashalidisGessneretal.2011, author = {Antoniou, Stella and Pashalidis, I. and Gessner, Andre and Kumke, Michael Uwe}, title = {The effect of humic acid on the formation and solubility of secondary solid phases (Nd(OH)CO3 and Sm(OH)CO3)}, series = {Radiochimica acta : international journal for chemical aspects of nuclear science and technology}, volume = {99}, journal = {Radiochimica acta : international journal for chemical aspects of nuclear science and technology}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0033-8230}, doi = {10.1524/ract.2011.1812}, pages = {217 -- 223}, year = {2011}, abstract = {The formation of secondary Ln(III) solid phases (e.g. Nd(OH)CO3 and Sm(OH)CO3) has been studied as a function of the humic acid (HA) concentration in 0.1 M NaClO4 aqueous solution and their solubility has been investigated in the neutral pH range (6.5-8) under normal atmospheric conditions. Nd(III) and Sm(III) were selected as analogues for trivalent lanthanide and actinide ions. The solid phases under investigation have been prepared by alkaline precipitation and characterized by TGA, ATR-FTIR, XRD, TRLFS, DR-UV-Vis and Raman spectroscopy, and solubility measurements. The spectroscopic data obtained indicate that Nd(OH)CO3 and Sm(OH)CO3 are stable and remain the solubility limiting solid phases even in the presence of increased HA concentration (0.5 g/L) in solution. Upon base addition in the Ln(III)-HA system decomplexation of the previously formed Ln(III)-humate complexes and precipitation of two distinct phases occurs, the inorganic (Ln(OH)CO3) and the organic phase (HA), which is adsorbed on the particle surface of the former. Nevertheless, HA affects the particle size of the solid phases. Increasing HA concentration results in decreasing crystallite size of the Nd(OH)CO3 and increasing crystallite size of the Sm(OH)CO3 solid phase, and affects inversely the solubility of the solid phases. However, this impact on the solid phase properties is expected to be of minor relevance regarding the chemical behavior and migration of trivalent lanthanides and actinides in the geosphere.}, language = {en} } @article{BullerLaschewskyLutzetal.2011, author = {Buller, Jens and Laschewsky, Andr{\´e} and Lutz, Jean-Francois and Wischerhoff, Erik}, title = {Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition}, series = {Polymer Chemistry}, volume = {2}, journal = {Polymer Chemistry}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c1py00001b}, pages = {1486 -- 1489}, year = {2011}, abstract = {A thermosensitive statistical copolymer based on oligo(ethylene glycol) methacrylates incorporating biotin was synthesized by free radical copolymerisation. The influence of added avidin on its thermoresponsive behaviour was investigated. The specific binding of avidin to the biotinylated copolymers provoked a marked increase of the lower critical solution temperature.}, language = {en} } @article{ZehmLaschewskyHeunemannetal.2011, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Heunemann, Peggy and Gradzielski, Michael and Prevost, Sylvain and Liang, Hua and Rabe, J{\"u}rgen P. and Lutz, Jean-Francois}, title = {Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces}, series = {Polymer Chemistry}, volume = {2}, journal = {Polymer Chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c0py00200c}, pages = {137 -- 147}, year = {2011}, abstract = {The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent "giant surfactants" according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the "semi-brush" precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains.}, language = {en} } @article{UtechtKlamrothSaalfrank2011, author = {Utecht, Manuel Martin and Klamroth, Tillmann and Saalfrank, Peter}, title = {Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers a study based on density functional theory}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {48}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c1cp22793a}, pages = {21608 -- 21614}, year = {2011}, abstract = {Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 angstrom and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures.}, language = {en} } @article{KleinpeterKoch2011, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Chelatoaromaticity-existing: yes or no? An answer given by spatial magnetic properties (through space NMR shieldings-TSNMRS)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {46}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c1cp21942a}, pages = {20593 -- 20601}, year = {2011}, abstract = {The spatial magnetic properties (through space NMR shieldings-TSNMRS) of metal complexes (with ligands such as acetylacetone, 3-hydroxy-pyran(4) one) and "metallobenzenes" have been calculated by the GIAO perturbation method and visualized as Iso-Chemical-Shielding Surfaces (ICSS) of various sizes and directions. The TSNMRS values, thus obtained, can be successfully employed to quantify and visualize partial aromaticity of the metallocyclic ring by comparison with the spatial magnetic properties of the corresponding non-complexed ligands in comparable structural and electronic situations, and benzene, respectively. Because anisotropy/ring current effects in H-1 NMR spectra proved to be the molecular response property of TSNMRS, the results obtained concerning partial "chelatoaromaticity" are experimentally ensured.}, language = {en} }