@article{RojasTierschRabeetal.2013, author = {Rojas, Oscar and Tiersch, Brigitte and Rabe, Christian and Stehle, Ralf and Hoell, Armin and Arlt, Bastian and Koetz, Joachim}, title = {Nonaqueous Microemulsions Based on N,N '-Alkylimidazolium Alkylsulfate Ionic Liquids}, series = {Langmuir}, volume = {29}, journal = {Langmuir}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la401080q}, pages = {6833 -- 6839}, year = {2013}, abstract = {The ternary system composed of the ionic liquid surfactant (IL-S) 1-butyl-3-methylimidazolium dodecylsulfate ([Bmim][DodSO(4)]), the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium ethylsulfate ([Emim][EtSO4]), and toluene has been investigated. Three major mechanisms guiding the structure of the isotropic phase were identified by means of conductometric experiments, which have been correlated to the presence of oil-in-IL, bicontinuous, and IL-in-oil microemulsions. IL-S forms micelles in toluene, which swell by adding RTIL as to be shown by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) experiments. Therefore, it is possible to form water free IL-in-oil reverse microemulsions <= 10 nm in size as a new type of nanoreactor.}, language = {en} } @article{WellertTierschKoetzetal.2011, author = {Wellert, Stefan and Tiersch, Brigitte and Koetz, Joachim and Richardt, Andre and Lapp, Alain and Holderer, Olaf and Gaeb, Juergen and Blum, Marc-Michael and Schulreich, Christoph and Stehle, Ralf and Hellweg, Thomas}, title = {The DFPase from Loligo vulgaris in sugar surfactant-based bicontinuous microemulsions structure, dynamics, and enzyme activity}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {40}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, doi = {10.1007/s00249-011-0689-0}, pages = {761 -- 774}, year = {2011}, abstract = {The enzyme diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris is of great interest because of its ability to catalyze the hydrolysis of highly toxic organophosphates. In this work, the enzyme structure in solution (native state) was studied by use of different scattering methods. The results are compared with those from hydrodynamic model calculations based on the DFPase crystal structure. Bicontinuous microemulsions made of sugar surfactants are discussed as host systems for the DFPase. The microemulsion remains stable in the presence of the enzyme, which is shown by means of scattering experiments. Moreover, activity assays reveal that the DFPase still has high activity in this complex reaction medium. To complement the scattering experiments cryo-SEM was also employed to study the microemulsion structure.}, language = {en} }