@article{BalderasValadezPacholski2021, author = {Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia}, title = {Plasmonic Nanohole Arrays on Top of Porous Silicon Sensors}, series = {ACS applied materials \& interfaces}, volume = {13}, journal = {ACS applied materials \& interfaces}, number = {30}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.1c07034}, pages = {36436 -- 36444}, year = {2021}, abstract = {Label-free optical sensors are attractive candidates, for example, for detecting toxic substances and monitoring biomolecular interactions. Their performance can be pushed by the design of the sensor through clever material choices and integration of components. In this work, two porous materials, namely, porous silicon and plasmonic nanohole arrays, are combined in order to obtain increased sensitivity and dual-mode sensing capabilities. For this purpose, porous silicon monolayers are prepared by electrochemical etching and plasmonic nanohole arrays are obtained using a bottom-up strategy. Hybrid sensors of these two materials are realized by transferring the plasmonic nanohole array on top of the porous silicon. Reflectance spectra of the hybrid sensors are characterized by a fringe pattern resulting from the Fabry-P{\´e}rot interference at the porous silicon borders, which is overlaid with a broad dip based on surface plasmon resonance in the plasmonic nanohole array. In addition, the hybrid sensor shows a significant higher reflectance in comparison to the porous silicon monolayer. The sensitivities of the hybrid sensor to refractive index changes are separately determined for both components. A significant increase in sensitivity from 213 ± 12 to 386 ± 5 nm/RIU is determined for the transfer of the plasmonic nanohole array sensors from solid glass substrates to porous silicon monolayers. In contrast, the spectral position of the interference pattern of porous silicon monolayers in different media is not affected by the presence of the plasmonic nanohole array. However, the changes in fringe pattern reflectance of the hybrid sensor are increased 3.7-fold after being covered with plasmonic nanohole arrays and could be used for high-sensitivity sensing. Finally, the capability of the hybrid sensor for simultaneous and independent dual-mode sensing is demonstrated.}, language = {en} } @article{BalderasValadezSchuermannPacholski2019, author = {Balderas-Valadez, Ruth Fabiola and Sch{\"u}rmann, Robin Mathis and Pacholski, Claudia}, title = {One Spot-Two Sensors: Porous Silicon Interferometers in Combination With Gold Nanostructures Showing Localized Surface Plasmon Resonance}, series = {Frontiers in chemistry}, volume = {7}, journal = {Frontiers in chemistry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00593}, pages = {12}, year = {2019}, abstract = {Sensors composed of a porous silicon monolayer covered with a film of nanostructured gold layer, which provide two optical signal transduction methods, are fabricated and thoroughly characterized concerning their sensing performance. For this purpose, silicon substrates were electrochemically etched in order to obtain porous silicon monolayers, which were subsequently immersed in gold salt solution facilitating the formation of a porous gold nanoparticle layer on top of the porous silicon. The deposition process was monitored by reflectance spectroscopy, and the appearance of a dip in the interference pattern of the porous silicon layer was observed. This dip can be assigned to the absorption of light by the deposited gold nanostructures leading to localized surface plasmon resonance. The bulk sensitivity of these sensors was determined by recording reflectance spectra in media having different refractive indices and compared to sensors exclusively based on porous silicon or gold nanostructures. A thorough analysis of resulting shifts of the different optical signals in the reflectance spectra on the wavelength scale indicated that the optical response of the porous silicon sensor is not influenced by the presence of a gold nanostructure on top. Moreover, the adsorption of thiol-terminated polystyrene to the sensor surface was solely detected by changes in the position of the dip in the reflectance spectrum, which is assigned to localized surface plasmon resonance in the gold nanostructures. The interference pattern resulting from the porous silicon layer is not shifted to longer wavelengths by the adsorption indicating the independence of the optical response of the two nanostructures, namely porous silicon and nanostructured gold layer, to refractive index changes and pointing to the successful realization of two sensors in one spot.}, language = {en} }