@article{AndrianovSaalfrank2006, author = {Andrianov, Ivan and Saalfrank, Peter}, title = {Free vibrational relaxation of H adsorbed on a Si(100) surface investigated with the multi-configurational time-dependent Hartree method}, series = {Chemical physics letters}, volume = {433}, journal = {Chemical physics letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2614}, doi = {10.1016/j.cplett.2006.11.067}, pages = {91 -- 96}, year = {2006}, abstract = {The results of a quantum-mechanical study of vibrational relaxation of hydrogen adsorbed on a Si(100) surface with the multi-configurational time-dependent Hartree (MCTDH) method are presented. A two-dimensional subsystem is coupled non-linearly to a bath of harmonic oscillators (phonons of the Si bulk), and the relaxation of subsystem vibrations proceeds primarily via a two-phonon process. Characteristic times of the system evolution agree well with our previous perturbation theory study. The vibrational population decay is non-exponential, exhibiting pronounced recurrences due to finite bath size. The dependence of the lifetimes of the vibrational levels on the bath size and on the coupling details is investigated.}, language = {en} } @article{BanerjeeSaalfrank2014, author = {Banerjee, Shiladitya and Saalfrank, Peter}, title = {Vibrationally resolved absorption, emission and resonance Raman spectra of diamondoids: a study based on time-dependent correlation functions}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c3cp53535e}, pages = {144 -- 158}, year = {2014}, language = {en} } @article{BanerjeeSaalfrank2014, author = {Banerjee, Shiladitya and Saalfrank, Peter}, title = {Vibrationally resolved absorption, emission and resonance Raman spectra of diamondoids : a study based on time- dependent correlation functions}, doi = {10.1039/C3CP53535E}, year = {2014}, language = {en} } @article{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and Stueker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp02615f}, pages = {19656 -- 19669}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp(2)/sp(3) hybrid species with CQC double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @article{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and St{\"u}ker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {17}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C5CP02615F}, pages = {19656 -- 19669}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp2/sp3 hybrid species with C[double bond, length as m-dash]C double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @article{BedurkeKlamrothKrauseetal.2019, author = {Bedurke, Florian and Klamroth, Tillmann and Krause, Pascal and Saalfrank, Peter}, title = {Discriminating organic isomers by high harmonic generation}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {150}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5096473}, pages = {10}, year = {2019}, abstract = {High Harmonic Generation (HHG) is a nonlinear optical process that provides a tunable source for high-energy photons and ultrashort laser pulses. Recent experiments demonstrated that HHG spectroscopy may also be used as an analytical tool to discriminate between randomly oriented configurational isomers of polyatomic organic molecules, namely, between the cis- and trans-forms of 1,2-dichloroethene (DCE) [M. C. H. Wong et al., Phys. Rev. A 84, 051403 (2011)]. Here, we suggest as an economic and at the same time a reasonably accurate method to compute HHG spectra for polyatomic species, Time-Dependent Configuration Interaction Singles (TD-CIS) theory in combination with extended atomic orbital bases and different models to account for ionization losses. The HHG spectra are computed for aligned and unaligned cis- and trans-DCE. For the unaligned case, a coherent averaging over possible rotational orientations is introduced. Furthermore, using TD-CIS, possible differences between the HHG spectra of cis- and trans-DCE are studied. For aligned molecules, spectral differences between cis and trans emerge, which can be related to their different point group symmetries. For unaligned, randomly oriented molecules, we also find distinct HHG spectra in partial agreement with experiment. In addition to HHG response in the frequency space, we compute time-frequency HHG spectra to gain insight into which harmonics are emitted at which time. Further differences between the two isomers emerge, suggesting time-frequency HHG as another tool to discriminate configurational isomers.}, language = {en} } @article{BedurkeKlamrothSaalfrank2021, author = {Bedurke, Florian and Klamroth, Tillmann and Saalfrank, Peter}, title = {Many-electron dynamics in laser-driven molecules}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {23}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp01100f}, pages = {13544 -- 13560}, year = {2021}, abstract = {With recent experimental advances in laser-driven electron dynamics in polyatomic molecules, the need arises for their reliable theoretical modelling. Among efficient, yet fairly accurate methods for many-electron dynamics are Time-Dependent Configuration Interaction Singles (TD-CIS) (a Wave Function Theory (WFT) method), and Real-Time Time-Dependent Density Functional Theory (RT-TD-DFT), respectively. Here we compare TD-CIS combined with extended Atomic Orbital (AO) bases, TD-CIS/AO, with RT-TD-DFT in a grid representation of the Kohn-Sham orbitals, RT-TD-DFT/Grid. Possible ionization losses are treated by complex absorbing potentials in energy space (for TD-CIS/AO) or real space (for RT-TD-DFT), respectively. The comparison is made for two test cases: (i) state-to-state transitions using resonant lasers (pi-pulses), i.e., bound electron motion, and (ii) large-amplitude electron motion leading to High Harmonic Generation (HHG). Test systems are a H-2 molecule and cis- and trans-1,2-dichlorethene, C2H2Cl2, (DCE). From time-dependent electronic energies, dipole moments and from HHG spectra, the following observations are made: first, for bound state-to-state transitions enforced by pi-pulses, TD-CIS nicely accounts for the expected population inversion in contrast to RT-TD-DFT, in agreement with earlier findings. Secondly, when using laser pulses under non-resonant conditions, dipole moments and lower harmonics in HHG spectra are obtained by TD-CIS/AO which are in good agreement with those obtained with RT-TD-DFT/Grid. Deviations become larger for higher harmonics and at low laser intensities, i.e., for low-intensity HHG signals. We also carefully test effects of basis sets for TD-CIS/AO and grid size for RT-TD-DFT/Grid, different exchange-correlation functionals in RT-TD-DFT, and absorbing boundaries. Finally, for the present examples, TD-CIS/AO is observed to be at least an order of magnitude more computationally efficient than RT-TD-DFT/Grid.}, language = {en} } @article{BlegerDokicPetersetal.2011, author = {Bleger, David and Dokic, Jadranka and Peters, Maike V. and Grubert, Lutz and Saalfrank, Peter and Hecht, Stefan}, title = {Electronic decoupling approach to quantitative photoswitching in linear multiazobenzene architectures}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {115}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {33}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp2044114}, pages = {9930 -- 9940}, year = {2011}, abstract = {A strategy to optimize the photoswitching efficiency of rigid, linear multiazobenzene constructs is presented. It consists of introducing large dihedral angles between azobenzene moieties linked via aryl-aryl connections in their para positions. Four bisazobenzenes exhibiting different dihedral angles as well as three single azobenzene reference compounds have been synthesized, and their switching behavior has been studied as well as experimentally and theoretically analyzed. As the dihedral angle between the two azobenzene units increases and consequently the electronic conjugation decreases, the photochromic characteristics improve, finally leading to individual azobenzene switches operating independently in the case of the perpendicular ortho,ortho,ortho',ortho'-tetramethyl biphenyl linker. The electronic decoupling leads to efficient separation of the absorption spectra of the involved switching states and hence by choosing the appropriate irradiation wavelength, an almost quantitative E -> Z photoisomerization up to 97\% overall Z-content can be achieved. In addition, thermal Z -> E isomerization processes become independent of each other with increasing decoupling. The electronic decoupling could furthermore be proven by electrochemistry. The experimental data are supported by theory, and calculations additionally provide mechanistic insight into the preferred pathway for the thermal Z,Z -> Z,E -> E,E isomerization via inversion on the inner N-atoms. Our decoupling approach outlined herein provides the basis for constructing rigid rod architectures composed of multiple azobenzene photochromes, which display practically quantitative photoswitching properties, a necessary prerequisite to achieve highly efficient transduction of light energy directly into motion.}, language = {en} } @article{BoeseSaalfrank2016, author = {Boese, Adrian Daniel and Saalfrank, Peter}, title = {CO Molecules on a NaCl(100) Surface: Structures, Energetics, and Vibrational Davydov Splittings at Various Coverages}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b03726}, pages = {12637 -- 12653}, year = {2016}, abstract = {In this work, we study the adsorption of CO from low to high coverage at a defect-free NaCl(100) surface by means of duster and periodic models, using highly accurate wave function-based QM:QM embedding as well as density functional theory. At low coverages, the most accurate methods predict a zero-point-corrected adsorption energy of around 13 kJ/mol, and the CO molecules are found to be oriented perpendicular to the surface. At higher coverages, lower-energy phases with nonparallel/upright, tilted orientations emerge. Besides the well-known p(2 x 1)/antiparallel phase (T/A), we find other tilted phases (tilted/irregular, T/I; tilted/spiral, T/S) as local minima. Vibrational frequencies for CO adsorbed on NaCl(100) and Davydov splittings of the C-O stretch vibration are also determined. The IR spectra are characteristic fingerprints for the relative orientation of CO molecules and may therefore be used as sensitive probes to distinguish parallel/upright from various tilted adsorption phases.}, language = {en} } @article{BouaklineFischerSaalfrank2019, author = {Bouakline, Foudhil and Fischer, E. W. and Saalfrank, Peter}, title = {A quantum-mechanical tier model for phonon-driven vibrational relaxation dynamics of adsorbates at surfaces}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {150}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {24}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5099902}, pages = {14}, year = {2019}, abstract = {We present a quantum-mechanical tier model for vibrational relaxation of low-lying excited states of an adsorbate vibrational mode (system), coupled to surface phonons (bath), at zero temperature. The tier model, widely used in studies of intramolecular vibrational energy redistribution in polyatomics, is adapted here to adsorbate-surface systems with the help of an embedded cluster approach, using orthogonal coordinates for the system and bath modes, and a phononic expansion of their interaction. The key idea of the model is to organize the system-bath zeroth-order vibrational space into a hierarchical structure of vibrational tiers and keep therein only vibrational states that are sequentially generated from the system-bath initial vibrational state. Each tier is generated from the previous one by means of a successor operator, derived from the system-bath interaction Hamiltonian. This sequential procedure leads to a drastic reduction of the dimension of the system-bath vibrational space. We notably show that for harmonic vibrational motion of the system and linear system-bath couplings in the system coordinate, the dimension of the tier-model vibrational basis scales as similar to N-lxv. Here, N is the number of bath modes, l is the highest-order of the phononic expansion, and l is the size of the system vibrational basis. This polynomial scaling is computationally far superior to the exponential scaling of the original zeroth-order vibrational basis, similar to M-N, with M being the number of basis functions per bath mode. In addition, since each tier is coupled only to its adjacent neighbors, the matrix representation of the system-bath Hamiltonian in this new vibrational basis has a symmetric block-tridiagonal form, with each block being very sparse. This favors the combination of the tier-model with iterative Krylov techniques, such as the Lanczos algorithm, to solve the time-dependent Schrodinger equation for the full Hamiltonian. To illustrate the method, we study vibrational relaxation of a D-Si bending mode, coupled via two-and (mainly) one-phonon interactions to a fully D-covered Si(100)-(2 x 1) surface, using a recent first-principles system-bath Hamiltonian. The results of the tier model are compared with those obtained by the Lindblad formalism of the reduced density matrix. We find that the tier model provides much more information and insight into mechanisms of vibration-phonon couplings at surfaces, and gives more reliable estimates of the adsorbate vibrational lifetimes. Moreover, the tier model might also serve as a benchmark for other approximate quantum-dynamics methods, such as multiconfiguration wavefunction approaches. Published under license by AIP Publishing.}, language = {en} }