@article{BalischewskiChoiBehrensetal.2021, author = {Balischewski, Christian and Choi, Hyung-Seok and Behrens, Karsten and Beqiraj, Alkit and K{\"o}rzd{\"o}rfer, Thomas and Gessner, Andre and Wedel, Armin and Taubert, Andreas}, title = {Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives}, series = {ChemistryOpen}, volume = {10}, journal = {ChemistryOpen}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.202000357}, pages = {272 -- 295}, year = {2021}, abstract = {Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.}, language = {en} } @article{TaubertStangeLietal.2012, author = {Taubert, Andreas and Stange, Franziska and Li, Zhonghao and Junginger, Mathias and G{\"u}nter, Christina and Neumann, Mike and Friedrich, Alwin}, title = {CuO nanoparticles from the Strongly Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide evaluation of the Ethanol Sensing Activity}, series = {ACS applied materials \& interfaces}, volume = {4}, journal = {ACS applied materials \& interfaces}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/am201427q}, pages = {791 -- 795}, year = {2012}, abstract = {The sensing potential of CuO nanoparticles synthesized via. precipitation from a water/ionic liquid precursor (ILP) mixture was investigated. The particles have a moderate surface area of 66 m(2)/g after synthesis, which decreases upon thermal treatment to below 5 m(2)/g. Transmission electron microscopy confirms crystal growth upon annealing, likely due to sintering effects. The as-synthesized particles can be used for ethanol sensing. The respective sensors show fast response and recovery times of below 10 s and responses greater than 2.3 at 100 ppm of ethanol at 200 degrees C, which is higher than any CuO-based ethanol sensor described so far.}, language = {en} }