@phdthesis{Charan2017, author = {Charan, Himanshu}, title = {Self assembled transmembrane protein polymer conjugates for the generation of nano thin membranes and micro compartments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402060}, school = {Universit{\"a}t Potsdam}, pages = {xii, 138}, year = {2017}, abstract = {This project was focused on generating ultra thin stimuli responsive membranes with an embedded transmembrane protein to act as the pore. The membranes were formed by crosslinking of transmembrane protein polymer conjugates. The conjugates were self assembled on air water interface and the polymer chains crosslinked using a UV crosslinkable comonomer to engender the membrane. The protein used for the studies reported herein was one of the largest transmembrane channel proteins, ferric hydroxamate uptake protein component A (FhuA), found in the outer membrane of Escherichia coli (E. coli). The wild type protein and three genetic variants of FhuA were provided by the group of Prof. Schwaneberg in Aachen. The well known thermo responsive poly(N isopropylacrylamide) (PNIPAAm) and the pH and thermo responsive polymer poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) were conjugated to FhuA and the genetic variants via controlled radical polymerization (CRP) using grafting from technique. These polymers were chosen because they would provide stimuli handles in the resulting membranes. The reported polymerization was the first ever attempt to attach polymer chains onto a membrane protein using site specific modification. The conjugate synthesis was carried out in two steps - a) FhuA was first converted into a macroinitiator by covalently linking a water soluble functional CRP initiator to the lysine residues. b) Copper mediated CRP was then carried out in pure buffer conditions with and without sacrificial initiator to generate the conjugates. The challenge was carrying out the modifications on FhuA without denaturing it. FhuA, being a transmembrane protein, requires amphiphilic species to stabilize its highly hydrophobic transmembrane region. For the experiments reported in this thesis, the stabilizing agent was 2 methyl 2,4-pentanediol (MPD). Since the buffer containing MPD cannot be considered a purely aqueous system, and also because MPD might interfere with the polymerization procedure, the reaction conditions were first optimized using a model globular protein, bovine serum albumin (BSA). The optimum conditions were then used for the generation of conjugates with FhuA. The generated conjugates were shown to be highly interfacially active and this property was exploited to let them self assemble onto polar apolar interfaces. The emulsions stabilized by particles or conjugates are referred to as Pickering emulsions. Crosslinking conjugates with a UV crosslinkable co monomer afforded nano thin micro compartments. Interfacial self assembly at the air water interface and subsequent UV crosslinking also yielded nano thin, stimuli responsive membranes which were shown to be mechanically robust. Initial characterization of the flux and permeation of water through these membranes is also reported herein. The generated nano thin membranes with PNIPAAm showed reduced permeation at elevated temperatures owing to the resistance by the hydrophobic and thus water-impermeable polymer matrix, hence confirming the stimulus responsivity. Additionally, as a part of collaborative work with Dr. Changzhu Wu, TU Dresden, conjugates of three enzymes with current/potential industrial relevance (candida antarctica lipase B, benzaldehyde lyase and glucose oxidase) with stimuli responsive polymers were synthesized. This work aims at carrying out cascade reactions in the Pickering emulsions generated by self assembled enzyme polymer conjugate.}, language = {en} }