@phdthesis{Vacogne2016, author = {Vacogne, Charlotte D.}, title = {New synthetic routes towards well-defined polypeptides, morphologies and hydrogels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396366}, school = {Universit{\"a}t Potsdam}, pages = {xii, 175}, year = {2016}, abstract = {Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications.}, language = {en} } @phdthesis{Justynska2005, author = {Justynska, Justyna}, title = {Towards a library of functional block copolymers : synthesis and colloidal properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5907}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Understanding the principles of self-organisation exhibited by block copolymers requires the combination of synthetic and physicochemical knowledge. The ability to synthesise block copolymers with desired architecture facilitates the ability to manipulate their aggregation behaviour, thus providing the key to nanotechnology. Apart from relative block volumes, the size and morphology of the produced nanostructures is controlled by the effective incompatibility between the different blocks. Since polymerisation techniques allowing for the synthesis of well-defined block copolymers are restricted to a limited number of monomers, the ability to tune the incompatibility is very limited. Nevertheless, Polymer Analogue Reactions can offer another possibility for the production of functional block copolymers by chemical modifications of well-defined polymer precursors. Therefore, by applying appropriate modification methods both volume fractions and incompatibility, can be adjusted. Moreover, copolymers with introduced functional units allow utilization of the concept of molecular recognition in the world of synthetic polymers. The present work describes a modular synthetic approach towards functional block copolymers. Radical addition of functional mercaptanes was employed for the introduction of diverse functional groups to polybutadiene-containing block copolymers. Various modifications of 1,2-polybutadiene-poly(ethylene oxide) block copolymer precursors are described in detail. Furthermore, extension of the concept to 1,2-polybutadiene-polystyrene block copolymers is demonstrated. Further investigations involved the self-organisation of the modified block copolymers. Formed aggregates in aqueous solutions of block copolymers with introduced carboxylic acid, amine and hydroxyl groups as well as fluorinated chains were characterised. Study of the aggregation behaviour allowed general conclusions to be drawn regarding the influence of the introduced groups on the self-organisation of the modified copolymers. Finally, possibilities for the formation of complexes, based on electrostatic or hydrogen-bonding interactions in mixtures of block copolymers bearing mutually interacting functional groups, were investigated.}, subject = {Blockcopolymere}, language = {en} } @phdthesis{RamirezRios2004, author = {Ram{\´i}rez R{\´i}os, Liliana Patricia}, title = {Superpara- and paramagnetic polymer colloids by miniemulsion processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001267}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Polymerverkapselte magnetische Nanopartikel versprechen, in der Zukunft sehr erfolgreich bei Anwendungen in der Biologie und der Medizin eingesetzt werden zu k{\"o}nnen z. B. in der Krebstherapie und als Kontrastmittel bei der magnetischen Kernspinresonanztomographie. Diese Arbeit zeigt, dass durch die interdisziplin{\"a}re Kombination verschiedener Techniken Herstellungsverfahren und Eigenschaften solcher Partikel verbessert werden k{\"o}nnen. Unter Miniemulsionen versteht man w{\"a}ssrige Dispersionen relativ stabiler {\"O}ltr{\"o}pfchen, zwischen 30 und 50 nm Gr{\"o}ße. Ein Nanometer (nm) ist der 1.000.000.000ste Teil eines Meters. Ein Haar ist ungef{\"a}hr 60.000 Nanometer breit. Hergestellt werden Miniemulsionen durch Scherung eines Systems bestehend aus {\"O}l, Wasser, Tensid (Seife) und einer weiteren Komponente, dem Hydrophob, das die Tr{\"o}pfchen stabilisieren soll. Die Polymerisation von Miniemulsionen erm{\"o}glicht die Verkapselung anorganischer Materialen z. B. magnetischer Teilchen oder Gadolinium-haltiger Komponenten. Zu Optimierung des Verkapselung, ist es notwendig, die richtige Menge eines geeigneten Tensids zu finden. Die magnetischen polymerverkapselten Nanopartikel, die in einer w{\"a}ssrigen Tr{\"a}gerfl{\"u}ssigkeit dispergiert sind, zeigen in Abh{\"a}ngigkeit von Partikelgr{\"o}ße, Zusammensetzung, elektronischer Beschaffenheit, etc. ein sogenanntes superpara- oder paramagnetisches Verhalten. Superpara- oder paramagnetisches Verhalten bedeutet, dass die Fl{\"u}ssigkeiten in Anwesenheit {\"a}ußerer Magnetfeldern ihre Fließf{\"a}higkeit beibehalten. Wenn das Magnetfeld entfernt wird, haben sie keine Erinnerung mehr daran, unter dem Einfluss eines Magnetfeldes gestanden zu haben, d. h., dass sie nach Abschalten des Magnetfeldes selbst nicht mehr magnetisch sind. Die Vorteile des Miniemulsionsverfahrens sind der hohe Gehalt und die homogene Verteilung magnetischer Teilchen in den einzelnen Nanopartikeln. Außerdem erm{\"o}glicht dieses Verfahren nanostrukturierte Kompositpartikel herzustellen, wie z. B polymerverkapselte Nanopartikel mit Nanoschichten bestehend aus magnetischen Molek{\"u}len.}, language = {en} }