@article{KathreinPesterRuppeletal.2016, author = {Kathrein, Christine C. and Pester, Christian and Ruppel, Markus and Jung, Maike and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Reorientation mechanisms of block copolymer/CdSe quantum dot composites under application of an electric field}, series = {Soft matter}, volume = {12}, journal = {Soft matter}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c6sm01073c}, pages = {8417 -- 8424}, year = {2016}, abstract = {Time- and temperature-resolved in situ birefringence measurements were applied to analyze the effect of nanoparticles on the electric field-induced alignment of a microphase separated solution of poly(styrene)-block-poly(isoprene) in toluene. Through the incorporation of isoprene-confined CdSe quantum dots the reorientation behavior is altered. Particle loading lowers the order-disorder transition temperature, and increases the defect density, favoring nucleation and growth as an alignment mechanism over rotation of grains. The temperature dependent alteration in the reorientation mechanism is analyzed via a combination of birefringence and synchrotron SAXS. The detailed understanding of the effect of nanoparticles on the reorientation mechanism is an important prerequisite for optimization of electricfield-induced alignment of block copolymer/nanoparticle composites where the block copolymer guides the nanoparticle self-assembly into anisotropic structures.}, language = {en} } @article{PesterSchmidtRuppeletal.2015, author = {Pester, Christian W. and Schmidt, Kristin and Ruppel, Markus and Schoberth, Heiko G. and B{\"o}ker, Alexander}, title = {Electric-Field-Induced Order-Order Transition from Hexagonally Perforated Lamellae to Lamellae}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b01336}, pages = {6206 -- 6213}, year = {2015}, abstract = {Block copolymers form a variety of microphase morphologies due to their ability to phase separate. The hexagonally perforated lamellar (HPL) morphology represents an unusually long-lived, nonequilibrium transient structure between lamellar and cylindrical phases. We present a detailed study of a concentrated, HPL-forming poly(styrene-b-isoprene) diblock copolymer solution in toluene in the presence of an electric field. We will show that this phase is readily aligned by a moderate electric field and provide experimental evidence for an electric-field-induced order order transition toward the lamellar phase under sufficiently strong fields. This process is shown to be fully reversible as lamellar perforations reconnect immediately upon secession of the external stimulus, recovering highly aligned perforated lamellae.}, language = {en} }