@article{KozlevcarKovscaJaglicicetal.2009, author = {Kozlevcar, Bojan and Kovsca, Igor and Jaglicic, Zvonko and Pevec, Andrej and Kitanovski, Nives and Strauch, Peter and Segedin, Primoz}, title = {Strong antiferromagnetism in isolated anionic dicopper(II) methanoato paddle-wheel complex}, issn = {0011-1643}, year = {2009}, language = {en} } @article{KozlevcarKovscaJaglicicetal.2009, author = {Kozlevcar, Bojan and Kovsca, Igor and Jaglicic, Zvonko and Pevec, Andrej and Kitanovski, Nives and Strauch, Peter and {\`e}egedin, Primož}, title = {Strong antiferromagnetism in isolated anionic dicopper(II) methanoato paddle-wheel complex}, issn = {0011-1643}, year = {2009}, abstract = {A new ionic compound (C5H6NO)(2)[CU2(mu-O2CH)(4)(O2CH)(2)], 1 formed of 4-hydroxypyridinium cations and a complex anion was synthesized. The anion is a paddle-wheel dicopper carboxylate complex with four syn,syn-bridging and two axial anionic methanoato ligands. The XRD structure determination of 1 reveals that the molecular structure is stabilized by two H-bonds between the cations and the axial paddle-wheel anions (N-H center dot center dot center dot O 2.755(3), O-H center dot center dot center dot O 2.489(2) angstrom). The compound exhibits a very strong (2J = 500 cm(- 1)) intra-binuclear anti ferromagnetic interaction noticed already at room temperature attributed to the methanoato intra-binuclear bridges. The typical EPR S = 1 spin system signals of the dicopper paddle-wheel complexes at 90 and 450- 700 mT are found in the room temperature spectrum, but they are poorly seen in the 110 K spectrum. These signals are of very low intensity and are accompanied by a dominant signal at 320 mT, all closely related to a very strong anti ferromagnetic interaction present in 1.}, language = {en} }