@article{KeckeisZellerJungetal.2021, author = {Keckeis, Philipp and Zeller, Enriko and Jung, Carina and Besirske, Patricia and Kirner, Felizitas and Ruiz-Agudo, Cristina and Schlaad, Helmut and C{\"o}lfen, Helmut}, title = {Modular toolkit of multifunctional block copoly(2-oxazoline)s for the synthesis of nanoparticles}, series = {Chemistry - a European journal}, volume = {27}, journal = {Chemistry - a European journal}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202101327}, pages = {8283 -- 8287}, year = {2021}, abstract = {Post-polymerization modification provides an elegant way to introduce chemical functionalities onto macromolecules to produce tailor-made materials with superior properties. This concept was adapted to well-defined block copolymers of the poly(2-oxazoline) family and demonstrated the large potential of these macromolecules as universal toolkit for numerous applications. Triblock copolymers with separated water-soluble, alkyne- and alkene-containing segments were synthesized and orthogonally modified with various low-molecular weight functional molecules by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and thiol-ene (TE) click reactions, respectively. Representative toolkit polymers were used for the synthesis of gold, iron oxide and silica nanoparticles.}, language = {en} } @article{TritschlerZlotnikovKeckeisetal.2014, author = {Tritschler, Ulrich and Zlotnikov, Igor and Keckeis, Philipp and Schlaad, Helmut and C{\"o}lfen, Helmut}, title = {Optical properties of self-organized gold nanorod-polymer hybrid films}, series = {Langmuir}, volume = {30}, journal = {Langmuir}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la503507u}, pages = {13781 -- 13790}, year = {2014}, abstract = {High fractions of gold nanorods were locally aligned by means of a polymeric liquid crystalline phase. The gold nanorods constituting >80 wt \% of the thin organic-inorganic composite films form a network with side-by-side and end-to-end combinations. Organization into these network structures was induced by shearing gold nanorod-LC polymer dispersions via spin-coating. The LC polymer is a polyoxazoline functionalized with pendent cholesteryl and carboxyl side groups enabling the polymer to bind to the CTAB stabilizer layer of the gold nanorods via electrostatic interactions, thus forming the glue between organic and inorganic components, and to form a chiral nematic lyotropic phase. The self-assembled locally oriented gold nanorod structuring enables control over collective optical properties due to plasmon resonance coupling, reminiscent of enhanced optical properties of natural biomaterials.}, language = {en} }