@phdthesis{Breternitz2023, author = {Breternitz, Joachim}, title = {Structural systematic investigations of photovoltaic absorber materials}, school = {Universit{\"a}t Potsdam}, pages = {189}, year = {2023}, abstract = {The direct conversion of light from the sun into usable forms of energy marks one of the central cornerstones of the change of our living from the use of fossil, non-renewable energy resources towards a more sustainable economy. Besides the necessary societal changes necessary, it is the understanding of the solids employed that is of particular importance for the success of this target. In this work, the principles and approaches of systematic-crystallographic characterisation and systematisation of solids is used and employed to allow a directed tuning of the materials properties. The thorough understanding of the solid-state forms hereby the basis, on which more applied approaches are founded. Two material systems, which are considered as promising solar absorber materials, are at the core of this work: halide perovskites and II-IV-N2 nitride materials. While the first is renowned for its high efficiencies and rapid development in the last years, the latter is putting an emphasis on true sustainability in that toxic and scarce elements are avoided.}, language = {en} } @phdthesis{Bouakline2023, author = {Bouakline, Foudhil}, title = {Manifestations of Quantum-Mechanical Effects in Molecular Reaction Dynamics}, school = {Universit{\"a}t Potsdam}, pages = {316}, year = {2023}, abstract = {This habilitation thesis summarises the research work performed by the author during the last quindecennial period. The dissertation reflects his main research interests, which revolve around quantum dynamics of small-sized molecular systems, including their interactions with electromagnetic radiation or dissipative environments. This covers various dynamical processes that involve bound-bound, bound-free, and free-free molecular transitions. The latter encompass light-triggered rovibrational or rovibronic dynamics in bound molecules, molecular photodissociation induced by weak or strong laser fields, state-to-state reactive and/or inelastic molecular collisions, and phonon-driven vibrational relaxation of adsorbates at solid surfaces. Although the dissertation covers different topics of molecular reaction dynamics, most of these studies focus on nuclear quantum effects and their manifestations in experimental measures. The latter are assessed through comparison between quantum and classical predictions, and/or direct confrontation of theory and experiment. Most well known quantum concepts and effects will be encountered in this work. Yet, almost all these quantum notions find their roots in the central pillar of quantum theory, namely, the quantum superposition principle. Indeed, quantum coherence is the main source of most quantum effects, including interference, entanglement, and even tunneling. Thus, the common and predominant theme of all the investigations of this thesis is quantum coherence, and the survival or quenching of subsequent interference effects in various molecular processes. The lion's share of the dissertation is devoted to two associated quantum concepts, which are usually overlooked in computational molecular dynamics, viz. the Berry phase and identical nuclei symmetry. The importance of the latter in dynamical molecular processes and their direct fingerprints in experimental observables also rely very much on quantum coherence and entanglement. All these quantum phenomena are thoroughly discussed within the four main topics that form the core of this thesis. Each topic is described in a separate chapter, where it is briefly summarised and then illustrated with three peer-reviewed publications. The first topic deals with the relevance of quantum coherence/interference in molecular collisions, with a focus on the hydrogen-exchange reaction, H+H2 --> H2+H, and its isotopologues. For these collision processes, the significance of interference of probability amplitudes arises because of the existence of two main scattering pathways. The latter could be inelastic and reactive scattering, direct and time-delayed scattering, or two encircling reaction paths that loop in opposite senses around a conical intersection (CI) of the H3 molecular system. Our joint theoretical-experimental investigations of these processes reveal strong interference and geometric phase (GP) effects in state-to-state reaction probabilities and differential cross sections. However, these coherent effects completely cancel in integral cross sections and reaction rate constants, due to efficient dephasing of interference between the different scattering amplitudes. As byproducts of these studies, we highlight the discovery of two novel scattering mechanisms, which contradict conventional textbook pictures of molecular reaction dynamics. The second topic concerns the effect of the Berry phase on molecular photodynamics at conical intersections. To understand this effect, we developed a topological approach that separates the total molecular wavefunction of an unbound molecular system into two components, which wind in opposite senses around the conical intersection. This separation reveals that the only effect of the geometric phase is to change the sign of the relative phase of these two components. This in turn leads to a shift in the interference pattern of the molecular system---a phase shift that is reminiscient of the celebrated Aharonov-Bohm effect. This procedure is numerically illustrated with photodynamics at model standard CIs, as well as strong-field dissociation of diatomics at light-induced conical intersections (LICIs). Besides the fundamental aspect of these studies, their findings allow to interpret and predict the effect of the GP on the state-resolved or angle-resolved spectra of pump-probe experimental schemes, particularly the distributions of photofragments in molecular photodissociation experiments. The third topic pertains to the role of the indistinguishability of identical nuclei in molecular reaction dynamics, with an emphasis on dynamical localization in highly symmetric molecules. The main object of these studies is whether nuclear-spin statistics allow dynamical localization of the electronic, vibrational, or even rotational density on a specific molecular substructure or configuration rather than on another one which is identical (indistinguishable). Group-theoretic analysis of the symmetrized molecular wavefunctions of these systems shows that nuclear permutation symmetry engenders quantum entanglement between the eigenstates of the different molecular degrees of freedom. This subsequently leads to complete quenching of dynamical localization over indistinguishable molecular substructures---an observation that is in sharp contradiction with well known textbook views of iconic molecular processes. This is illustrated with various examples of quantum dynamics in symmetric double-well achiral molecules, such as the prototypical umbrella inversion motion of ammonia, electronic Kekul{\´e} dynamics in the benzene molecule, and coupled electron-nuclear dynamics in laser-induced indirect photodissociation of the dihydrogen molecular cation. The last part of the thesis is devoted to the development of approximate wavefunction approaches for phonon-induced vibrational relaxation of adsorbates (system) at surfaces (bath). Due to the so-called 'curse of dimensionality', these system-bath complexes cannot be handled with standard wavefunction methods. To alleviate the exponential scaling of the latter, we developed approximate yet quite accurate numerical schemes that have a polynomial scaling with respect to the bath dimensionality. The corresponding algorithms combine symmetry-based reductions of the full vibrational Hilbert space and iterative Krylov techniques. These approximate wavefunction approaches resemble the 'Bixon-Jortner model' and the more general 'quantum tier model'. This is illustrated with the decay of H-Si (D-Si) vibrations on a fully H(D)-covered silicon surface, which is modelled with a phonon-bath of more than two thousand oscillators. These approximate methods allow reliable estimation of the adsorbate vibrational lifetimes, and provide some insight into vibration-phonon couplings at solid surfaces. Although this topic is mainly computational, the developed wavefunction approaches permit to describe quantum entanglement between the system and bath states, and to embody some coherent effects in the time-evolution of the (sub-)system, which cannot be accounted for with the widely used 'reduced density matrix formalism'.}, language = {en} } @phdthesis{Strauss2023, author = {Strauß, Volker}, title = {Laser-induced carbonization - from fundamentals to applications}, doi = {10.25932/publishup-59199}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591995}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 78, A245}, year = {2023}, abstract = {Fabricating electronic devices from natural, renewable resources has been a common goal in engineering and materials science for many years. In this regard, carbon is of special significance due to its biological compatibility. In the laboratory, carbonized materials and their composites have been proven as promising solutions for a range of future applications in electronics, optoelectronics, or catalytic systems. On the industrial scale, however, their application is inhibited by tedious and expensive preparation processes and a lack of control over the processing and material parameters. Therefore, we are exploring new concepts for the direct utilization of functional carbonized materials in electronic applications. In particular, laser-induced carbonization (carbon laser-patterning (CLaP)) is emerging as a new tool for the precise and selective synthesis of functional carbon-based materials for flexible on-chip applications. We developed an integrated approach for on-the-spot laser-induced synthesis of flexible, carbonized films with specific functionalities. To this end, we design versatile precursor inks made from naturally abundant starting compounds and reactants to cast films which are carbonized with an infrared laser to obtain functional patterns of conductive porous carbon networks. In our studies we obtained deep mechanistic insights into the formation process and the microstructure of laser-patterned carbons (LP-C). We shed light on the kinetic reaction mechanism based on the interplay between the precursor properties and the reaction conditions. Furthermore, we investigated the use of porogens, additives, and reactants to provide a toolbox for the chemical and physical fine-tuning of the electronic and surface properties and the targeted integration of functional sites into the carbon network. Based on this knowledge, we developed prototype resistive chemical and mechanical sensors. In further studies, we show the applicability of LP-C as electrode materials in electrocatalytic and charge-storage applications. To put our findings into a common perspective, our results are embedded into the context of general carbonization strategies, fundamentals of laser-induced materials processing, and a broad literature review on state-of-the-art laser-carbonization, in the general part.}, language = {en} } @phdthesis{Hermanns2021, author = {Hermanns, Jolanda}, title = {Development, use and evaluation of concepts and materials for teaching organic chemistry at university}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @phdthesis{Schmidt2020, author = {Schmidt, Bernhard V. K. J.}, title = {Polymers, self-assembly and materials}, doi = {10.25932/publishup-48481}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484819}, school = {Universit{\"a}t Potsdam}, pages = {VI, 350}, year = {2020}, abstract = {In der vorliegenden Arbeit wurden die Selbstorganisation von hydrophilen Polymeren, verst{\"a}rkte Hydrogele, sowie anorganische/Polymer Hybridmaterialien untersucht. Dabei beschreibt die Arbeit den Weg von Polymersynthese mittels verschiedener Methoden {\"u}ber Polymerselbstanordnung bis zur Herstellung von Polymermaterialien mit vielversprechenden Eigenschaften f{\"u}r zuk{\"u}nftige Anwendungen. Hydrophile Polymere wurden verwendet, um Mehrphasensysteme herzustellen, Wasser-in-Wasser Emulsionen zu bilden und selbstangeordneten Strukturen zu erzeugen, z. B. Partikel/Aggregate oder hohle Strukturen aus komplett wasserl{\"o}slichen Bausteinen. Die Strukturbildung in w{\"a}ssriger Umgebung wurde ferner f{\"u}r supramolekulare Hydrogele mit definierter Unterstruktur und reversiblem Gelierungsverhalten eingesetzt. Auf dem Gebiet der Hydrogele wurde das anorganische Material graphitisches Kohlenstoffnitrid (g-CN) als Photoinitiator f{\"u}r die Hydrogelsynthese und als Verst{\"a}rker der Gelstruktur beschrieben. Hierbei konnten Hydrogele mit herausragenden Eigenschaften generiert werden, z. B. hohe Kompressibilit{\"a}t, hohe Speichermodule oder Gleitf{\"a}higkeit. Die Kombinationen von g-CN mit verschiedenen Polymeren erlaubte es zudem neue Materialien f{\"u}r die Photokatalyse bereitzustellen. Als weiteres anorganisches Material wurden Metall-organische Ger{\"u}ste (MOFs) mit Polymeren kombiniert. Es konnte gezeigt werden, dass die Verwendung von MOFs in der Polymersynthese einen starken Einfluss auf die erzeugte Polymerstruktur hat und MOFs als Katalysator f{\"u}r Polymerisationen verwendet werden k{\"o}nnen. Zuletzt wurde die MOF Synthese an sich untersucht, wobei Polymeradditive oder L{\"o}sungsmittel eingesetzt wurden um die kristalline Struktur der MOFs zu modulieren. Insgesamt wurden hier verschiedene Errungenschaften f{\"u}r die Polymerchemie beschrieben, z.B. neuartige hydrophile Polymere und Hydrogele, die zur Zeit wichtige Materialien im Polymerbereich durch ihre vielversprechenden Anwendungen im biomedizinischen Sektor darstellen. Außerdem ergab die Kombination von Polymeren mit Materialien aus anderen Bereichen der Chemie, z. B. g-CN und MOFs, neue Materialien mit bemerkenswerten Eigenschaften, die ebenfalls von Interesse f{\"u}r zuk{\"u}nftige Anwendungen sind, z. B. Beschichtungen, Partikeltechnologie und Katalyse.}, language = {en} } @phdthesis{Yuan2015, author = {Yuan, Jiayin}, title = {Poly(Ionic Liquid)s}, school = {Universit{\"a}t Potsdam}, pages = {300}, year = {2015}, language = {en} } @phdthesis{Giordano2014, author = {Giordano, Cristina}, title = {A neglected world: transition metal nitride and metal carbide based nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75375}, school = {Universit{\"a}t Potsdam}, pages = {191}, year = {2014}, abstract = {Potentiality of nanosized materials has been largely proved but a closer look shows that a significant percentage of this research is related to oxides and metals, while the number drastically drops for metallic ceramics, namely transition metal nitrides and metal carbides. The lack of related publications do not reflect their potential but rather the difficulties related to their synthesis as dense and defect-free structures, fundamental prerequisites for advanced mechanical applications. The present habilitation work aims to close the gap between preparation and processing, indicating novel synthetic pathways for a simpler and sustainable synthesis of transition metal nitride (MN) and carbide (MC) based nanostructures and easier processing thereafter. In spite of simplicity and reliability, the designed synthetic processes allow the production of functional materials, with the demanded size and morphology. The goal was achieved exploiting classical and less-classical precursors, ranging from common metal salts and molecules (e.g. urea, gelatin, agar, etc), to more exotic materials, such as leafs, filter paper and even wood. It was found that the choice of precursors and reaction conditions makes it possible to control chemical composition (going for instance from metal oxides to metal oxy-nitrides to metal nitrides, or from metal nitrides to metal carbides, up to quaternary systems), size (from 5 to 50 nm) and morphology (going from mere spherical nanoparticles to rod-like shapes, fibers, layers, meso-porous and hierarchical structures, etc). The nature of the mixed precursors also allows the preparation of metal nitrides/carbides based nanocomposites, thus leading to multifunctional materials (e.g. MN/MC@C, MN/MC@PILs, etc) but also allowing dispersion in liquid media. Control over composition, size and morphology is obtained with simple adjustment of the main route, but also coupling it with processes such as electrospin, aerosol spray, bio-templating, etc. Last but not least, the nature of the precursor materials also allows easy processing, including printing, coating, casting, film and thin layers preparation, etc). The designed routes are, concept-wise, similar and they all start by building up a secondary metal ion-N/C precursor network, which converts, upon heat treatment, into an intermediate "glass". This glass stabilizes the nascent nanoparticles during their nucleation and impairs their uncontrolled growth during the heat treatment (scheme 1). This way, one of the main problems related to the synthesis of MN/MC, i.e. the need of very high temperature, could also be overcome (from up to 2000°C, for classical synthesis, down to 700°C in the present cases). The designed synthetic pathways are also conceived to allow usage of non-toxic compounds and to minimize (or even avoid) post-synthesis purification, still bringing to phase pure and well-defined (crystalline) nanoparticles. This research aids to simplify the preparation of MN/MC, making these systems now readily available in suitable amounts both for fundamental and applied science. The prepared systems have been tested (in some cases for the first time) in many different fields, e.g. battery (MnN0.43@C shown a capacity stabilized at a value of 230 mAh/g, with coulombic efficiencies close to 100\%), as alternative magnetic materials (Fe3C nanoparticles were prepared with different size and therefore different magnetic behavior, superparamagnetic or ferromagnetic, showing a saturation magnetization value up to 130 emu/g, i.e. similar to the value expected for the bulk material), as filters and for the degradation of organic dyes (outmatching the performance of carbon), as catalysts (both as active phase but also as active support, leading to high turnover rate and, more interesting, to tunable selectivity). Furthermore, with this route, it was possible to prepare for the first time, to the best of our knowledge, well-defined and crystalline MnN0.43, Fe3C and Zn1.7GeN1.8O nanoparticles via bottom-up approaches. Once the synthesis of these materials can be made straightforward, any further modification, combination, manipulation, is in principle possible and new systems can be purposely conceived (e.g. hybrids, nanocomposites, ferrofluids, etc).}, language = {en} } @phdthesis{Faivre2014, author = {Faivre, Damien}, title = {Biological and biomimetic formation and organization of magnetic nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72022}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Biological materials have ever been used by humans because of their remarkable properties. This is surprising since the materials are formed under physiological conditions and with commonplace constituents. Nature thus not only provides us with inspiration for designing new materials but also teaches us how to use soft molecules to tune interparticle and external forces to structure and assemble simple building blocks into functional entities. Magnetotactic bacteria and their chain of magnetosomes represent a striking example of such an accomplishment where a very simple living organism controls the properties of inorganics via organics at the nanometer-scale to form a single magnetic dipole that orients the cell in the Earth magnetic field lines. My group has developed a biological and a bio-inspired research based on these bacteria. My research, at the interface between chemistry, materials science, physics, and biology focuses on how biological systems synthesize, organize and use minerals. We apply the design principles to sustainably form hierarchical materials with controlled properties that can be used e.g. as magnetically directed nanodevices towards applications in sensing, actuating, and transport. In this thesis, I thus first present how magnetotactic bacteria intracellularly form magnetosomes and assemble them in chains. I developed an assay, where cells can be switched from magnetic to non-magnetic states. This enabled to study the dynamics of magnetosome and magnetosome chain formation. We found that the magnetosomes nucleate within minutes whereas chains assembles within hours. Magnetosome formation necessitates iron uptake as ferrous or ferric ions. The transport of the ions within the cell leads to the formation of a ferritin-like intermediate, which subsequently is transported and transformed within the magnetosome organelle in a ferrihydrite-like precursor. Finally, magnetite crystals nucleate and grow toward their mature dimension. In addition, I show that the magnetosome assembly displays hierarchically ordered nano- and microstructures over several levels, enabling the coordinated alignment and motility of entire populations of cells. The magnetosomes are indeed composed of structurally pure magnetite. The organelles are partly composed of proteins, which role is crucial for the properties of the magnetosomes. As an example, we showed how the protein MmsF is involved in the control of magnetosome size and morphology. We have further shown by 2D X-ray diffraction that the magnetosome particles are aligned along the same direction in the magnetosome chain. We then show how magnetic properties of the nascent magnetosome influence the alignment of the particles, and how the proteins MamJ and MamK coordinate this assembly. We propose a theoretical approach, which suggests that biological forces are more important than physical ones for the chain formation. All these studies thus show how magnetosome formation and organization are under strict biological control, which is associated with unprecedented material properties. Finally, we show that the magnetosome chain enables the cells to find their preferred oxygen conditions if the magnetic field is present. The synthetic part of this work shows how the understanding of the design principles of magnetosome formation enabled me to perform biomimetic synthesis of magnetite particles within the highly desired size range of 25 to 100 nm. Nucleation and growth of such particles are based on aggregation of iron colloids termed primary particles as imaged by cryo-high resolution TEM. I show how additives influence magnetite formation and properties. In particular, MamP, a so-called magnetochrome proteins involved in the magnetosome formation in vivo, enables the in vitro formation of magnetite nanoparticles exclusively from ferrous iron by controlling the redox state of the process. Negatively charged additives, such as MamJ, retard magnetite nucleation in vitro, probably by interacting with the iron ions. Other additives such as e.g. polyarginine can be used to control the colloidal stability of stable-single domain sized nanoparticles. Finally, I show how we can "glue" magnetic nanoparticles to form propellers that can be actuated and swim with the help of external magnetic fields. We propose a simple theory to explain the observed movement. We can use the theoretical framework to design experimental conditions to sort out the propellers depending on their size and effectively confirm this prediction experimentally. Thereby, we could image propellers with size down to 290 nm in their longer dimension, much smaller than what perform so far.}, language = {en} } @phdthesis{Kroener2013, author = {Kr{\"o}ner, Dominik}, title = {Analysis and control of light-induced processes in molecules: Electron and nuclear quantum dynamics for aspects of stereoisomerism and spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70477}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The habilitation thesis covers theoretical investigations on light-induced processes in molecules. The study is focussed on changes of the molecular electronic structure and geometry, caused either by photoexcitation in the event of a spectroscopic analysis, or by a selective control with shaped laser pulses. The applied and developed methods are predominantly based on quantum chemistry as well as on electron and nuclear quantum dynamics, and in parts on molecular dynamics. The studied scientific problems deal with stereoisomerism and the question of how to either switch or distinguish chiral molecules using laser pulses, and with the essentials for the simulation of the spectroscopic response of biochromophores, in order to unravel their photophysics. The accomplished findings not only explain experimental results and extend existing approaches, but also contribute significantly to the basic understanding of the investigated light-driven molecular processes. The main achievements can be divided in three parts: First, a quantum theory for an enantio- and diastereoselective or, in general, stereoselective laser pulse control was developed and successfully applied to influence the chirality of molecular switches. The proposed axially chiral molecules possess different numbers of "switchable" stable chiral conformations, with one particular switch featuring even a true achiral "off"-state which allows to enantioselectively "turn on" its chirality. Furthermore, surface mounted chiral molecular switches with several well-defined orientations were treated, where a newly devised highly flexible stochastic pulse optimization technique provides high stereoselectivity and efficiency at the same time, even for coupled chirality-changing degrees of freedom. Despite the model character of these studies, the proposed types of chiral molecular switches and, all the more, the developed basic concepts are generally applicable to design laser pulse controlled catalysts for asymmetric synthesis, or to achieve selective changes in the chirality of liquid crystals or in chiroptical nanodevices, implementable in information processing or as data storage. Second, laser-driven electron wavepacket dynamics based on ab initio calculations, namely time-dependent configuration interaction, was extended by the explicit inclusion of magnetic field-magnetic dipole interactions for the simulation of the qualitative and quantitative distinction of enantiomers in mass spectrometry by means of circularly polarized ultrashort laser pulses. The developed approach not only allows to explain the origin of the experimentally observed influence of the pulse duration on the detected circular dichroism in the ion yield, but also to predict laser pulse parameters for an optimal distinction of enantiomers by ultrashort shaped laser pulses. Moreover, these investigations in combination with the previous ones provide a fundamental understanding of the relevance of electric and magnetic interactions between linearly or non-linearly polarized laser pulses and (pro-)chiral molecules for either control by enantioselective excitation or distinction by enantiospecific excitation. Third, for selected light-sensitive biological systems of central importance, like e.g. antenna complexes of photosynthesis, simulations of processes which take place during and after photoexcitation of their chromophores were performed, in order to explain experimental (spectroscopic) findings as well as to understand the underlying photophysical and photochemical principles. In particular, aspects of normal mode mixing due to geometrical changes upon photoexcitation and their impact on (time-dependent) vibronic and resonance Raman spectra, as well as on intramolecular energy redistribution were addressed. In order to explain unresolved experimental findings, a simulation program for the calculation of vibronic and resonance Raman spectra, accounting for changes in both vibrational frequencies and normal modes, was created based on a time-dependent formalism. In addition, the influence of the biochemical environment on the electronic structure of the chromophores was studied by electrostatic interactions and mechanical embedding using hybrid quantum-classical methods. Environmental effects were found to be of importance, in particular, for the excitonic coupling of chromophores in light-harvesting complex II. Although the simulations for such highly complex systems are still restricted by various approximations, the improved approaches and obtained results have proven to be important contributions for a better understanding of light-induced processes in biosystems which also adds to efforts of their artificial reproduction.}, language = {en} } @phdthesis{Titirici2013, author = {Titirici, Maria-Magdalena}, title = {Hydrothermal carbonisation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66885}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The world's appetite for energy is producing growing quantities of CO2, a pollutant that contributes to the warming of the planet and which currently cannot be removed or stored in any significant way. Other natural reserves are also being devoured at alarming rates and current assessments suggest that we will need to identify alternative sources in the near future. With the aid of materials chemistry it should be possible to create a world in which energy use needs not be limited and where usable energy can be produced and stored wherever it is needed, where we can minimize and remediate emissions as new consumer products are created, whilst healing the planet and preventing further disruptive and harmful depletion of valuable mineral assets. In achieving these aims, the creation of new and very importantly greener industries and new sustainable pathways are crucial. In all of the aforementioned applications, new materials based on carbon, ideally produced via inexpensive, low energy consumption methods, using renewable resources as precursors, with flexible morphologies, pore structures and functionalities, are increasingly viewed as ideal candidates to fulfill these goals. The resulting materials should be a feasible solution for the efficient storage of energy and gases. At the end of life, such materials ideally must act to improve soil quality and to act as potential CO2 storage sinks. This is exactly the subject of this habilitation thesis: an alternative technology to produce carbon materials from biomass in water using low carbonisation temperatures and self-generated pressures. This technology is called hydrothermal carbonisation. It has been developed during the past five years by a group of young and talented researchers working under the supervision of Dr. Titirici at the Max-Planck Institute of Colloids and Interfaces and it is now a well-recognised methodology to produce carbon materials with important application in our daily lives. These applications include electrodes for portable electronic devices, filters for water purification, catalysts for the production of important chemicals as well as drug delivery systems and sensors.}, language = {en} }