@article{SalibaCorreaBaenaWolffetal.2018, author = {Saliba, Michael and Correa-Baena, Juan-Pablo and Wolff, Christian Michael and Stolterfoht, Martin and Phung, Thi Thuy Nga and Albrecht, Steve and Neher, Dieter and Abate, Antonio}, title = {How to Make over 20\% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b00136}, pages = {4193 -- 4201}, year = {2018}, abstract = {Perovskite solar cells (PSCs) are currently one of the most promising photovoltaic technologies for highly efficient and cost-effective solar energy production. In only a few years, an unprecedented progression of preparation procedures and material compositions delivered lab-scale devices that have now reached record power conversion efficiencies (PCEs) higher than 20\%, competing with most established solar cell materials such as silicon, CIGS, and CdTe. However, despite a large number of researchers currently involved in this topic, only a few groups in the world can reproduce >20\% efficiencies on a regular n-i-p architecture. In this work, we present detailed protocols for preparing PSCs in regular (n-i-p) and inverted (p-i-n) architectures with >= 20\% PCE. We aim to provide a comprehensive, reproducible description of our device fabrication , protocols. We encourage the practice of reporting detailed and transparent protocols that can be more easily reproduced by other laboratories. A better reporting standard may, in turn, accelerate the development of perovskite solar cells and related research fields.}, language = {en} } @phdthesis{Phung2020, author = {Phung, Thi Thuy Nga}, title = {Defect chemistry in halide perovskites}, doi = {10.25932/publishup-47652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476529}, school = {Universit{\"a}t Potsdam}, pages = {vi, 231}, year = {2020}, abstract = {Metallhalogenid-Perowskite haben sich aufgrund ihrer hervorragenden optoelektronischen Eigenschaften zu einer attraktiven Materialklasse f{\"u}r die Photovoltaikindustrie entwickelt. Die Langzeitstabilit{\"a}t ist jedoch noch immer ein Hindernis f{\"u}r die industrielle Realisierung dieser Materialklasse. Zunehmend zeigen sich Hinweise daf{\"u}r, dass intrinsische Defekte im Perowskit die Material-Degradation f{\"o}rdern. Das Verst{\"a}ndnis der Defekte im Perowskit ist wichtig, um seine Stabilit{\"a}t und optoelektronische Qualit{\"a}t weiter zu verbessern. Diese Dissertation konzentriert sich daher auf das Thema Defektchemie im Perowskit. Der erste Teil der Dissertation gibt einen kurzen {\"U}berblick {\"u}ber die Defekteigenschaften von Halogenid-Perowskiten. Anschließend zeigt der zweite Teil, dass das Dotieren von Methylammoniumbleiiodid mit einer kleinen Menge von Erdalkalimetallen (Sr und Mg) ein h{\"o}herwertiges, weniger fehlerhaftes Material erzeugt, was zu hohen Leerlaufspannungen sowohl in der n-i-p als auch in der p-i-n Architektur von Solarzellen f{\"u}hrt. Es wurde beobachtet, dass die Dotierung in zwei Dom{\"a}nen stattfindet: eine niedrige Dotierungskonzentration f{\"u}hrt zum Einschluss der entsprechenden Elemente in das Kristallgitter erm{\"o}glicht, w{\"a}hrend eine hohe Dotierungskonzentration zu einer Phasentrennung f{\"u}hrt. Das Material kann im Niedrigdotierungsbereich mehr n-dotiert sein, w{\"a}hrend es im Hochdotierungsbereich weniger n-dotiert ist. Die Schwelle dieser beiden Regime h{\"a}ngt von der Atomgr{\"o}ße der Dotierelemente ab. Der n{\"a}chste Teil der Dissertation untersucht die photoinduzierte Degradation von Methylammonium-Bleiiodid. Dieser Abbaumechanismus h{\"a}ngt eng mit der Bildung und Migration von defekten zusammen. Nach der Bildung k{\"o}nnen sich diese in Abh{\"a}ngigkeit von der Defektdichte und ihrer Verteilung bewegen. Demnach kann eine hohe Defektdichte wie an den Korngrenzen eines Perowskitfilms die Beweglichkeit von ionischen Punktdefekten hemmen. Diese Erkenntnis ließe sich auf das zuk{\"u}nftige Materialdesign in der Photovoltaikindustrie anwenden, da die Perowskit-Solarzellen normalerweise einen polykristallinen D{\"u}nnfilm mit hoher Korngrenzendichte verwenden. Die abschließende Studie, die in dieser Dissertation vorgestellt wird, konzentriert sich auf die Stabilit{\"a}t der neuesten „dreifach-kationen" Perowskit-basierten Solarzellen unter dem Einfluss einer permanent angelegten elektrischen Spannung. Eine l{\"a}ngere Betriebsdauer (mehr als drei Stunden permanente Spannung) f{\"o}rdert die Amorphisierung im Halogenid-Perowskiten. Es wird hierbei vermutet, dass sich eine amorphe Phase an den Grenzfl{\"a}chen bildet, insbesondere zwischen der lochselektiven Schicht und dem Perowskit. Diese amorphe Phase hemmt den Ladungstransport und beeintr{\"a}chtigt die Leistung der Perowskit-Solarzelle erheblich. Sobald jedoch keine Spannung mehr anliegt k{\"o}nnen sich die Perowskitschichten im Dunkeln bereits nach einer kurzen Pause regenerieren. Die Amorphisierung wird auf die Migration von ionischen Fehlordnungen zur{\"u}ckgef{\"u}hrt, h{\"o}chstwahrscheinlich auf die Migration von Halogeniden. Dieser Ansatz zeigt ein neues Verst{\"a}ndnis des Abbau-Mechanismus in Perowskit-Solarzellen unter Betriebsbedingungen.}, language = {en} }