@article{SchlappaBrenkerBresseletal.2021, author = {Schlappa, Stephanie and Brenker, Lee Josephine and Bressel, Lena and Hass, Roland and M{\"u}nzberg, Marvin}, title = {Process characterization of polyvinyl acetate emulsions applying inline photon density wave spectroscopy at high solid contents}, series = {Polymers / Molecular Diversity Preservation International}, volume = {13}, journal = {Polymers / Molecular Diversity Preservation International}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym13040669}, pages = {15}, year = {2021}, abstract = {The high solids semicontinuous emulsion polymerization of polyvinyl acetate using poly (vinyl alcohol-co-vinyl acetate) as protective colloid is investigated by optical spectroscopy. The suitability of Photon Density Wave (PDW) spectroscopy as inline Process Analytical Technology (PAT) for emulsion polymerization processes at high solid contents (>40\% (w/w)) is studied and evaluated. Inline data on absorption and scattering in the dispersion is obtained in real-time. The radical polymerization of vinyl acetate to polyvinyl acetate using ascorbic acid and sodium persulfate as redox initiator system and poly (vinyl alcohol-co-vinyl acetate) as protective colloid is investigated. Starved-feed radical emulsion polymerization yielded particle sizes in the nanometer size regime. PDW spectroscopy is used to monitor the progress of polymerization by studying the absorption and scattering properties during the synthesis of dispersions with increasing monomer amount and correspondingly decreasing feed rate of protective colloid. Results are compared to particle sizes determined with offline dynamic light scattering (DLS) and static light scattering (SLS) during the synthesis.}, language = {en} } @article{SandmannMuenzbergBresseletal.2022, author = {Sandmann, Michael and M{\"u}nzberg, Marvin and Bressel, Lena and Reich, Oliver and Hass, Roland}, title = {Inline monitoring of high cell density cultivation of Scenedesmus rubescens in a mesh ultra-thin layer photobioreactor by photon density wave spectroscopy}, series = {BMC Research Notes / Biomed Central}, volume = {15}, journal = {BMC Research Notes / Biomed Central}, number = {1}, publisher = {Biomed Central (London)}, address = {London}, issn = {1756-0500}, doi = {10.1186/s13104-022-05943-2}, pages = {7}, year = {2022}, abstract = {Objective Due to multiple light scattering that occurs inside and between cells, quantitative optical spectroscopy in turbid biological suspensions is still a major challenge. This includes also optical inline determination of biomass in bioprocessing. Photon Density Wave (PDW) spectroscopy, a technique based on multiple light scattering, enables the independent and absolute determination of optical key parameters of concentrated cell suspensions, which allow to determine biomass during cultivation. Results A unique reactor type, called "mesh ultra-thin layer photobioreactor" was used to create a highly concentrated algal suspension. PDW spectroscopy measurements were carried out continuously in the reactor without any need of sampling or sample preparation, over 3 weeks, and with 10-min time resolution. Conventional dry matter content and coulter counter measurements have been employed as established offline reference analysis. The PBR allowed peak cell dry weight (CDW) of 33.4 g L-1. It is shown that the reduced scattering coefficient determined by PDW spectroscopy is strongly correlated with the biomass concentration in suspension and is thus suitable for process understanding. The reactor in combination with the fiber-optical measurement approach will lead to a better process management.}, language = {en} } @article{AdebayoHashimHassetal.2017, author = {Adebayo, Segun Emmanuel and Hashim, Norhashila and Hass, Roland and Reich, Oliver and Regen, Christian and M{\"u}nzberg, Marvin and Abdan, Khalina and Hanafi, Marsyita and Zude-Sasse, Manuela}, title = {Using absorption and reduced scattering coefficients for non-destructive analyses of fruit flesh firmness and soluble solids content in pear}, series = {Postharvest Biology and Technology}, volume = {130}, journal = {Postharvest Biology and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-5214}, doi = {10.1016/j.postharvbio.2017.04.004}, pages = {56 -- 63}, year = {2017}, abstract = {Quality attributes of fruit determine its acceptability by the retailer and consumer. The objective of this work was to investigate the potential of absorption (μa) and reduced scattering (μs') coefficients of European pear to analyze its fruit flesh firmness and soluble solids content (SSC). The absolute reference values, μa* (cm-1) and μs'* (cm-1), of pear were invasively measured, employing multi-spectral photon density wave (PDW) spectroscopy at preselected wavelengths of 515, 690, and 940 nm considering two batches of unripe and overripe fruit. On eight measuring dates during fruit development, μa and μs' were analyzed non-destructively by means of laser light backscattering imaging (LLBI) at similar wavelengths of 532, 660, and 830 nm by means of fitting according to Farrell's diffusion theory, using fix reference values of either μa* or μs'*. Both, the μa* and the μa as well as μs'* and μs' showed similar trends. Considering the non-destructively measured data during fruit development, μa at 660 nm decreased 91 till 141 days after full bloom (dafb) from 1.49 cm-1 to 0.74 cm-1 due to chlorophyll degradation. At 830 nm, μa only slightly decreased from 0.41 cm-1 to 0.35 cm-1. The μs' at all wavelengths revealed a decreasing trend as the fruit developed. The difference measured at 532 nm was most pronounced decreasing from 24 cm-1 to 10 cm-1, while at 660 nm and 830 nm values decreased from 15 cm-1 to 13 cm-1 and from 10 cm-1 to 8 cm-1, respectively. When building calibration models with partial least-squares regression analysis on the optical properties for non-destructive analysis of the fruit SSC, μa at 532 nm and 830 nm resulted in a correlation coefficient of R = 0.66, however, showing high measuring uncertainty. The combination of all three wavelengths gave an enhanced, encouraging R = 0.89 for firmness analysis using μs' in the freshly picked fruit.}, language = {en} } @article{HassMuenzbergBresseletal.2013, author = {Hass, Roland and M{\"u}nzberg, Marvin and Bressel, Lena and Reich, Oliver}, title = {Industrial applications of photon density wave spectroscopy for in-line particle sizing [Invited]}, series = {Applied optics}, volume = {52}, journal = {Applied optics}, number = {7}, publisher = {Optical Society of America}, address = {Washington}, issn = {1559-128X}, doi = {10.1364/AO.52.001423}, pages = {1423 -- 1431}, year = {2013}, abstract = {Optical spectroscopy in highly turbid liquid material is often restricted by simultaneous occurrence of absorption and scattering of light. Photon Density Wave (PDW) spectroscopy is one of the very few, yet widely unknown, technologies for the independent quantification of these two optical processes. Here, a concise overview about modern PDW spectroscopy is given, including all necessary equations concerning the optical description of the investigated material, dependent light scattering, particle sizing, and PDW spectroscopy itself. Additionally, it is shown how the ambiguity in particle sizing, arising from Mie theory, can be correctly solved. Due to its high temporal resolution, its applicability to highest particle concentrations, and its purely fiber-optical probe, PDW spectroscopy possesses all fundamental characteristics for optical in-line process analysis. Several application examples from the chemical industry are presented. (C) 2013 Optical Society of America}, language = {en} }