@article{CrovettoKojdaYietal.2022, author = {Crovetto, Andrea and Kojda, Danny and Yi, Feng and Heinselman, Karen N. and LaVan, David A. and Habicht, Klaus and Unold, Thomas and Zakutayev, Andriy}, title = {Crystallize It before It diffuses}, series = {Journal of the american chemical society}, volume = {144}, journal = {Journal of the american chemical society}, number = {29}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.2c04868}, pages = {13334 -- 13343}, year = {2022}, abstract = {Numerous phosphorus-rich metal phosphides containing both P-P bonds and metal-P bonds are known from the solid-state chemistry literature. A method to grow these materials in thin-film form would be desirable, as thin films are required in many applications and they are an ideal platform for high-throughput studies. In addition, the high density and smooth surfaces achievable in thin films are a significant advantage for characterization of transport and optical properties. Despite these benefits, there is hardly any published work on even the simplest binary phosphorus-rich phosphide films. Here, we demonstrate growth of single-phase CuP2 films by a two-step process involving reactive sputtering of amorphous CuP2+x and rapid annealing in an inert atmosphere. At the crystallization temperature, CuP2 is thermodynamically unstable with respect to Cu3P and P-4. However, CuP2 can be stabilized if the amorphous precursors are mixed on the atomic scale and are sufficiently close to the desired composition (neither too P poor nor too P rich). Fast formation of polycrystalline CuP2, combined with a short annealing time, makes it possible to bypass the diffusion processes responsible for decomposition. We find that thin-film CuP2 is a 1.5 eV band gap semiconductor with interesting properties, such as a high optical absorption coefficient (above 10(5) cm(-1)), low thermal conductivity (1.1 W/(K m)), and composition-insensitive electrical conductivity (around 1 S/cm). We anticipate that our processing route can be extended to other phosphorus-rich phosphides that are still awaiting thin-film synthesis and will lead to a more complete understanding of these materials and of their potential applications.}, language = {en} } @misc{MazzioThulasimaniRylletal.2018, author = {Mazzio, Katherine A. and Thulasimani, Monika Raja and Ryll, Britta and Kojda, Sandrino Danny and Habicht, Klaus and Raoux, Simone}, title = {Synthetic manipulation of hybrid thermoelectric materials}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {255}, journal = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2018}, language = {en} }