@article{LaschewskyLunkenheimerRakotoalyetal.2005, author = {Laschewsky, Andr{\´e} and Lunkenheimer, K. and Rakotoaly, R. H. and Wattebled, Laurent}, title = {Spacer effects in dimeric cationic surfactants}, issn = {0303-402X}, year = {2005}, abstract = {A series of dimeric cationic surfactants (gemini surfactants), which have spacer groups of varying length and flexibility, was synthesized. The series is derived from the parent compounds dodecyltrimethylammonium chloride or benzyldodecyldimethylammonium chloride. Characteristic surfactant properties of the dimeric ammonium compounds such as surface activity, micellization, viscosity effects, foaming, and solubilization, were studied with respect to the influence of the spacer group on the surfactant. For all properties, the influence of the length of the spacer group was predominant though the chemical nature of the spacer cannot be neglected}, language = {en} } @article{KubowiczBaussardLutzetal.2005, author = {Kubowicz, Stephan and Baussard, Jean-Francois and Lutz, Jean-Francois and Th{\"u}nemann, Andreas F. and von Berlepsch, Hans and Laschewsky, Andr{\´e}}, title = {Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium}, year = {2005}, language = {en} } @article{MallwitzLaschewsky2005, author = {Mallwitz, Frank and Laschewsky, Andr{\´e}}, title = {Direct access to stable, freestanding polymer membranes by layer-by-layer assembly of polyelectrolytes}, issn = {0935-9648}, year = {2005}, abstract = {A novel method to prepare ultrathin, freestanding polyelectrolyte films in pores, without the need of sacrificial precursor coatings, has been developed (see Figure). The freestanding films are stable under ambient conditions and suited for additional electrostatic self-assembly or surface modification. They can be specifically decomposed, whereas after thermal crosslinking, resistant films are obtained}, language = {en} } @article{LeporattiSczechRiegleretal.2005, author = {Leporatti, S. and Sczech, R. and Riegler, H. and Bruzzano, Stefano and Storsberg, J. and Loth, Fritz and Jaeger, Werner and Laschewsky, Andr{\´e} and Eichhorn, S. and Donath, E.}, title = {Interaction forces between cellulose microspheres and ultrathin cellulose films monitored by colloidal probe microscopy : effect of wet strength agents}, year = {2005}, language = {en} } @article{LaschewskyPoundSkrabaniaetal.2007, author = {Laschewsky, Andr{\´e} and Pound, Gwenaelle and Skrabania, Katja and Holdt, Hans-Joachim and Teller, Joachim}, title = {Unsymmetrical bifunctional trithiocarbonate as unexpected by-product in the synthesis of a dithioester RAFT agent}, issn = {0303-402X}, doi = {10.1007/s.00396-007-1653-5}, year = {2007}, abstract = {The trithiocarbonate 2-(benzylsulfanylthiocarbonylsulfanyl) propanoic acid is formed as minor by-product in the synthesis of the dithioester 2-((2-phenylthioacetyl)sulfanyl) propanoic acid via the Grignard route. The mechanism for this side reaction is not clear. The isolated trithiocarbonate may act as unsymmetrical but bifunctional RAFT agent in the aqueous polymerization of N,N-dimethyl acrylamide. Therefore, it is important to separate it completely from the dithioester before engaging the latter in controlled free radical polymerization to guarantee a maximum control.}, language = {en} } @article{StrehmelLaschewskyWetzel2006, author = {Strehmel, Veronika and Laschewsky, Andr{\´e} and Wetzel, Hendrik}, title = {Homopolymerization of a highly polar zwitterionic methacrylate in ionic liquids and its copolymerization with a non-polar methacrylate}, year = {2006}, abstract = {Free radical homo- and copolymerization of the highly polar 3-(N-[2-methacryloyloxyethyl]-N,N-dimethylammonio) propane sulfonate with the nonpolar n-butylmethacrylate was investigated in the ionic liquids 1-butyl-3-methyl imidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluoro phosphate, and compared to analogous polymerizations in standard solvents. Higher molar masses are obtained for the zwitterionic homopolymer when the polymerization is carried out in an ionic liquid compared to the classical reaction in water. Although homopolymerization of the sulfobetain monomer as well as of n-butylmethacrylate results in phase separation during the polymerization process, copolymerization of a stoichiometric ratio of the two monomers in the ionic liquids produced transparent gels indicating that no macrophase separation occurs. The use of ionic liquids as reaction medium improved the copolymerization behavior of the two methacrylates significantly. Whereas only minor amounts of n-butyl methacrylate were incorporated in the copolymer when synthesized in acetonitrile, the content of the non-polar monomer units in the zwitterionic copolymer approached increasingly its content in the polymerization mixture when ionic liquids were employed as solvents}, language = {en} } @article{GarnierLaschewsky2006, author = {Garnier, Sebastien and Laschewsky, Andr{\´e}}, title = {New amphiphilic diblock copolymers : surfactant properties and solubilization in their micelles}, issn = {0743-7463}, doi = {10.1021/La0600595}, year = {2006}, abstract = {Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g(.)L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks}, language = {en} } @article{DelormeDuboisGarnieretal.2006, author = {Delorme, Nicolas and Dubois, Monique and Garnier, Sebastien and Laschewsky, Andr{\´e} and Weinkamer, Richard and Zemb, Thomas and Fery, Andreas}, title = {Surface immobilization and mechanical properties of catanionic hollow faceted polyhedrons}, issn = {1520-1758}, doi = {10.1021/Jp054473+}, year = {2006}, abstract = {We report here for the first time on surface immobilization of hollow faceted polyhedrons formed from catanionic surfactant mixtures. We find that electrostatic interaction with the substrate dominates their adhesion behavior. Using polyelectrolyte coated surfaces with tailored charge densities, polyhedrons can thus be immobilized without complete spreading, which allows for further study of their mechanical properties using AFM force measurements. The elastic response of individual polyhedrons can be locally resolved, showing pronounced differences in stiffness between faces and vertexes of the structure, which makes these systems interesting as models for structurally similar colloidal scale objects such as viruses, where such effects are predicted but cannot be directly observed due to the smaller dimensions. Elastic constants of the wall material are estimated using shell and plate deformation models and are found to be a factor of 5 larger than those for neutral lipidic bilayers in the gel state. We discuss the molecular origins of this high stiffness}, language = {en} } @article{LaschewskyGarnierKirstenetal.2006, author = {Laschewsky, Andr{\´e} and Garnier, Sebastien and Kirsten, Juliane and Mertoglu, Murat and Skrabania, Katja and Lutz, Jean-Francois}, title = {Comb-like polymeric surfactants by combining block and graft copolymer architectures}, issn = {0065-7727}, year = {2006}, language = {en} }