@phdthesis{Galushchinskiy2023, author = {Galushchinskiy, Alexey}, title = {Carbon nitride: a flexible platform for net-oxidative and net-neutral photocatalysis}, doi = {10.25932/publishup-61092}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610923}, school = {Universit{\"a}t Potsdam}, pages = {351}, year = {2023}, abstract = {Solar photocatalysis is the one of leading concepts of research in the current paradigm of sustainable chemical industry. For actual practical implementation of sunlight-driven catalytic processes in organic synthesis, a cheap, efficient, versatile and robust heterogeneous catalyst is necessary. Carbon nitrides are a class of organic semiconductors who are known to fulfill these requirements. First, current state of solar photocatalysis in economy, industry and lab research is overviewed, outlining EU project funding, prospective synthetic and reforming bulk processes, small scale solar organic chemistry, and existing reactor designs and prototypes, concluding feasibility of the approach. Then, the photocatalytic aerobic cleavage of oximes to corresponding aldehydes and ketones by anionic poly(heptazine imide) carbon nitride is discussed. The reaction provides a feasible method of deprotection and formation of carbonyl compounds from nitrosation products and serves as a convenient model to study chromoselectivity and photophysics of energy transfer in heterogeneous photocatalysis. Afterwards, the ability of mesoporous graphitic carbon nitride to conduct proton-coupled electron transfer was utilized for the direct oxygenation of 1,3-oxazolidin-2-ones to corresponding 1,3-oxazlidine-2,4-diones. This reaction provides an easier access to a key scaffold of diverse types of drugs and agrochemicals. Finally, a series of novel carbon nitrides based on poly(triazine imide) and poly(heptazine imide) structure was synthesized from cyanamide and potassium rhodizonate. These catalysts demonstrated a good performance in a set of photocatalytic benchmark reactions, including aerobic oxidation, dual nickel photoredox catalysis, hydrogen peroxide evolution and chromoselective transformation of organosulfur precursors. Concluding, the scope of carbon nitride utilization for net-oxidative and net-neutral photocatalytic processes was expanded, and a new tunable platform for catalyst synthesis was discovered.}, language = {en} } @phdthesis{Savatieiev2023, author = {Savatieiev, Oleksandr}, title = {Carbon nitride semiconductors: properties and application as photocatalysts in organic synthesis}, school = {Universit{\"a}t Potsdam}, pages = {272}, year = {2023}, abstract = {Graphitic carbon nitrides (g-CNs) are represented by melon-type g-CN, poly(heptazine imides) (PHIs), triazine-based g-CN and poly(triazine imide) with intercalated LiCl (PTI/Li+Cl‒). These materials are composed of sp2-hybridized carbon and nitrogen atoms; C:N ratio is close to 3:4; the building unit is 1,3,5-triazine or tri-s-triazine; the building units are interconnected covalently via sp2-hybridized nitrogen atoms or NH-moieties; the layers are assembled into a stack via weak van der Waals forces as in graphite. Due to medium band gap (~2.7 eV) g-CNs, such as melon-type g-CN and PHIs, are excited by photons with wavelength ≤ 460 nm. Since 2009 g-CNs have been actively studied as photocatalysts in evolution of hydrogen and oxygen - two half-reactions of full water splitting, by employing corresponding sacrificial agents. At the same time application of g-CNs as photocatalysts in organic synthesis has been remaining limited to few reactions only. Cumulative Habilitation summarizes research work conducted by the group 'Innovative Heterogeneous Photocatalysis' between 2017-2023 in the field of carbon nitride organic photocatalysis, which is led by Dr. Oleksandr Savatieiev. g-CN photocatalysts activate molecules, i.e. generate their more reactive open-shell intermediates, via three modes: i) Photoinduced electron transfer (PET); ii) Excited state proton-coupled electron transfer (ES-PCET) or direct hydrogen atom transfer (dHAT); iii) Energy transfer (EnT). The scope of reactions that proceed via oxidative PET, i.e. one-electron oxidation of a substrate to the corresponding radical cation, are represented by synthesis of sulfonylchlorides from S-acetylthiophenols. The scope of reactions that proceed via reductive PET, i.e. one-electron reduction of a substrate to the corresponding radical anion, are represented by synthesis of γ,γ-dichloroketones from the enones and chloroform. Due to abundance of sp2-hybridized nitrogen atoms in the structure of g-CN materials, they are able to cleave X-H bonds in organic molecules and store temporary hydrogen atom. ES-PCET or dHAT mode of organic molecules activation to the corresponding radicals is implemented for substrates featuring relatively acidic X-H bonds and those that are characterized by low bond dissociation energy, such as C-H bond next to the heteroelements. On the other hand, reductively quenched g-CN carrying hydrogen atom reduces a carbonyl compound to the ketyl radical via PCET that is thermodynamically more favorable pathway compared to the electron transfer. The scope of these reactions is represented by cyclodimerization of α,β-unsaturated ketones to cyclopentanoles. g-CN excited state demonstrates complex dynamics with the initial formation of singlet excited state, which upon intersystem crossing produces triplet excited state that is characterized by the lifetime > 2 μs. Due to long lifetime, g-CN activate organic molecules via EnT. For example, g-CN sensitizes singlet oxygen, which is the key intermediate in the dehydrogenation of aldoximes to nitrileoxides. The transient nitrileoxide undergoes [3+2]-cycloaddition to nitriles and gives oxadiazoles-1,2,4. PET, ES-PCET and EnT are fundamental phenomena that are applied beyond organic photocatalysis. Hybrid composite is formed by combining conductive polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with potassium poly(heptazine imide) (K-PHI). Upon PET, K-PHI modulated population of polarons and therefore conductivity of PEDOT:PSS. The initial state of PEDOT:PSS is recovered upon material exposure to O2. K-PHI:PEDOT:PSS may be applied in O2 sensing. In the presence of electron donors, such as tertiary amines and alcohols, and irradiation with light, K-PHI undergoes photocharging - the g-CN material accumulates electrons and charge-compensating cations. Such photocharged state is stable under anaerobic conditions for weeks, but at the same time it is a strong reductant. This feature allows decoupling in time light harvesting and energy storage in the form of electron-proton couples from utilization in organic synthesis. The photocharged state of K-PHI reduces nitrobenzene to aniline, and enables dimerization of α,β-unsaturated ketones to hexadienones in dark.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} }