@article{QinOschatz2020, author = {Qin, Qing and Oschatz, Martin}, title = {Overcoming chemical inertness under ambient conditions}, series = {ChemElectroChem}, volume = {7}, journal = {ChemElectroChem}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201901970}, pages = {878 -- 889}, year = {2020}, abstract = {Ammonia (NH3) synthesis by the electrochemical N-2 reduction reaction (NRR) is increasingly studied and proposed as an alternative process to overcome the disadvantages of Haber-Bosch synthesis by a more energy-efficient, carbon-free, delocalized, and sustainable process. An ever-increasing number of scientists are working on the improvement of the faradaic efficiency (FE) and NH3 production rate by developing novel catalysts, electrolyte concepts, and/or by contributing theoretical studies. The present Minireview provides a critical view on the interplay of different crucial aspects in NRR from the electrolyte, over the mechanism of catalytic activation of N-2, to the full electrochemical cell. Five critical questions are asked, discussed, and answered, each coupled with a summary of recent developments in the respective field. This article is not supposed to be a complete summary of recent research about NRR but provides a rather critical personal view on the field. It is the major aim to give an overview over crucial influences on different length scales to shine light on the sweet spots into which room for revolutionary instead of incremental improvements may exist.}, language = {en} } @article{QinZhaoSchmalleggeretal.2019, author = {Qin, Qing and Zhao, Yun and Schmallegger, Max and Heil, Tobias and Schmidt, Johannes and Walczak, Ralf and Gescheidt-Demner, Georg and Jiao, Haijun and Oschatz, Martin}, title = {Enhanced Electrocatalytic N-2 Reduction via Partial Anion Substitution in Titanium Oxide-Carbon Composites}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {58}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {37}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201906056}, pages = {13101 -- 13106}, year = {2019}, abstract = {The electrochemical conversion of N-2 at ambient conditions using renewably generated electricity is an attractive approach for sustainable ammonia (NH3) production. Considering the chemical inertness of N-2, rational design of efficient and stable catalysts is required. Therefore, in this work, it is demonstrated that a C-doped TiO2/C (C-TixOy/C) material derived from the metal-organic framework (MOF) MIL-125(Ti) can achieve a high Faradaic efficiency (FE) of 17.8 \%, which even surpasses most of the established noble metal-based catalysts. On the basis of the experimental results and theoretical calculations, the remarkable properties of the catalysts can be attributed to the doping of carbon atoms into oxygen vacancies (OVs) and the formation of Ti-C bonds in C-TixOy. This binding motive is found to be energetically more favorable for N-2 activation compared to the non-substituted OVs in TiO2. This work elucidates that electrochemical N-2 reduction reaction (NRR) performance can be largely improved by creating catalytically active centers through rational substitution of anions into metal oxides.}, language = {en} }