@phdthesis{Giordano2014, author = {Giordano, Cristina}, title = {A neglected world: transition metal nitride and metal carbide based nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75375}, school = {Universit{\"a}t Potsdam}, pages = {191}, year = {2014}, abstract = {Potentiality of nanosized materials has been largely proved but a closer look shows that a significant percentage of this research is related to oxides and metals, while the number drastically drops for metallic ceramics, namely transition metal nitrides and metal carbides. The lack of related publications do not reflect their potential but rather the difficulties related to their synthesis as dense and defect-free structures, fundamental prerequisites for advanced mechanical applications. The present habilitation work aims to close the gap between preparation and processing, indicating novel synthetic pathways for a simpler and sustainable synthesis of transition metal nitride (MN) and carbide (MC) based nanostructures and easier processing thereafter. In spite of simplicity and reliability, the designed synthetic processes allow the production of functional materials, with the demanded size and morphology. The goal was achieved exploiting classical and less-classical precursors, ranging from common metal salts and molecules (e.g. urea, gelatin, agar, etc), to more exotic materials, such as leafs, filter paper and even wood. It was found that the choice of precursors and reaction conditions makes it possible to control chemical composition (going for instance from metal oxides to metal oxy-nitrides to metal nitrides, or from metal nitrides to metal carbides, up to quaternary systems), size (from 5 to 50 nm) and morphology (going from mere spherical nanoparticles to rod-like shapes, fibers, layers, meso-porous and hierarchical structures, etc). The nature of the mixed precursors also allows the preparation of metal nitrides/carbides based nanocomposites, thus leading to multifunctional materials (e.g. MN/MC@C, MN/MC@PILs, etc) but also allowing dispersion in liquid media. Control over composition, size and morphology is obtained with simple adjustment of the main route, but also coupling it with processes such as electrospin, aerosol spray, bio-templating, etc. Last but not least, the nature of the precursor materials also allows easy processing, including printing, coating, casting, film and thin layers preparation, etc). The designed routes are, concept-wise, similar and they all start by building up a secondary metal ion-N/C precursor network, which converts, upon heat treatment, into an intermediate "glass". This glass stabilizes the nascent nanoparticles during their nucleation and impairs their uncontrolled growth during the heat treatment (scheme 1). This way, one of the main problems related to the synthesis of MN/MC, i.e. the need of very high temperature, could also be overcome (from up to 2000°C, for classical synthesis, down to 700°C in the present cases). The designed synthetic pathways are also conceived to allow usage of non-toxic compounds and to minimize (or even avoid) post-synthesis purification, still bringing to phase pure and well-defined (crystalline) nanoparticles. This research aids to simplify the preparation of MN/MC, making these systems now readily available in suitable amounts both for fundamental and applied science. The prepared systems have been tested (in some cases for the first time) in many different fields, e.g. battery (MnN0.43@C shown a capacity stabilized at a value of 230 mAh/g, with coulombic efficiencies close to 100\%), as alternative magnetic materials (Fe3C nanoparticles were prepared with different size and therefore different magnetic behavior, superparamagnetic or ferromagnetic, showing a saturation magnetization value up to 130 emu/g, i.e. similar to the value expected for the bulk material), as filters and for the degradation of organic dyes (outmatching the performance of carbon), as catalysts (both as active phase but also as active support, leading to high turnover rate and, more interesting, to tunable selectivity). Furthermore, with this route, it was possible to prepare for the first time, to the best of our knowledge, well-defined and crystalline MnN0.43, Fe3C and Zn1.7GeN1.8O nanoparticles via bottom-up approaches. Once the synthesis of these materials can be made straightforward, any further modification, combination, manipulation, is in principle possible and new systems can be purposely conceived (e.g. hybrids, nanocomposites, ferrofluids, etc).}, language = {en} } @phdthesis{Santan2013, author = {Santan, Harshal Diliprao}, title = {Synthesis and characterization of thermosensitive hydrogels derived from polysaccharides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69793}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In this work, thermosensitive hydrogels having tunable thermo-mechanical properties were synthesized. Generally the thermal transition of thermosensitive hydrogels is based on either a lower critical solution temperature (LCST) or critical micelle concentration/ temperature (CMC/ CMT). The temperature dependent transition from sol to gel with large volume change may be seen in the former type of thermosensitive hydrogels and is negligible in CMC/ CMT dependent systems. The change in volume leads to exclusion of water molecules, resulting in shrinking and stiffening of system above the transition temperature. The volume change can be undesired when cells are to be incorporated in the system. The gelation in the latter case is mainly driven by micelle formation above the transition temperature and further colloidal packing of micelles around the gelation temperature. As the gelation mainly depends on concentration of polymer, such a system could undergo fast dissolution upon addition of solvent. Here, it was envisioned to realize a thermosensitive gel based on two components, one responsible for a change in mechanical properties by formation of reversible netpoints upon heating without volume change, and second component conferring degradability on demand. As first component, an ABA triblockcopolymer (here: Poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (PEPE) with thermosensitive properties, whose sol-gel transition on the molecular level is based on micellization and colloidal jamming of the formed micelles was chosen, while for the additional macromolecular component crosslinking the formed micelles biopolymers were employed. The synthesis of the hydrogels was performed in two ways, either by physical mixing of compounds showing electrostatic interactions, or by covalent coupling of the components. Biopolymers (here: the polysaccharides hyaluronic acid, chondroitin sulphate, or pectin, as well as the protein gelatin) were employed as additional macromolecular crosslinker to simultaneously incorporate an enzyme responsiveness into the systems. In order to have strong ionic/electrostatic interactions between PEPE and polysaccharides, PEPE was aminated to yield predominantly mono- or di-substituted PEPEs. The systems based on aminated PEPE physically mixed with HA showed an enhancement in the mechanical properties such as, elastic modulus (G′) and viscous modulus (G′′) and a decrease of the gelation temperature (Tgel) compared to the PEPE at same concentration. Furthermore, by varying the amount of aminated PEPE in the composition, the Tgel of the system could be tailored to 27-36 °C. The physical mixtures of HA with di-amino PEPE (HA·di-PEPE) showed higher elastic moduli G′ and stability towards dissolution compared to the physical mixtures of HA with mono-amino PEPE (HA·mono-PEPE). This indicates a strong influence of electrostatic interaction between -COOH groups of HA and -NH2 groups of PEPE. The physical properties of HA with di-amino PEPE (HA·di-PEPE) compare beneficially with the physical properties of the human vitreous body, the systems are highly transparent, and have a comparable refractive index and viscosity. Therefore,this material was tested for a potential biological application and was shown to be non-cytotoxic in eluate and direct contact tests. The materials will in the future be investigated in further studies as vitreous body substitutes. In addition, enzymatic degradation of these hydrogels was performed using hyaluronidase to specifically degrade the HA. During the degradation of these hydrogels, increase in the Tgel was observed along with decrease in the mechanical properties. The aminated PEPE were further utilised in the covalent coupling to Pectin and chondroitin sulphate by using EDC as a coupling agent. Here, it was possible to adjust the Tgel (28-33 °C) by varying the grafting density of PEPE to the biopolymer. The grafting of PEPE to Pectin enhanced the thermal stability of the hydrogel. The Pec-g-PEPE hydrogels were degradable by enzymes with slight increase in Tgel and decrease in G′ during the degradation time. The covalent coupling of aminated PEPE to HA was performed by DMTMM as a coupling agent. This method of coupling was observed to be more efficient compared to EDC mediated coupling. Moreover, the purification of the final product was performed by ultrafiltration technique, which efficiently removed the unreacted PEPE from the final product, which was not sufficiently achieved by dialysis. Interestingly, the final products of these reaction were in a gel state and showed enhancement in the mechanical properties at very low concentrations (2.5 wt\%) near body temperature. In these hydrogels the resulting increase in mechanical properties was due to the combined effect of micelle packing (physical interactions) by PEPE and covalent netpoints between PEPE and HA. PEPE alone or the physical mixtures of the same components were not able to show thermosensitive behavior at concentrations below 16 wt\%. These thermosensitive hydrogels also showed on demand solubilisation by enzymatic degradation. The concept of thermosensitivity was introduced to 3D architectured porous hydrogels, by covalently grafting the PEPE to gelatin and crosslinking with LDI as a crosslinker. Here, the grafted PEPE resulted in a decrease in the helix formation in gelatin chains and after fixing the gelatin chains by crosslinking, the system showed an enhancement in the mechanical properties upon heating (34-42 °C) which was reversible upon cooling. A possible explanation of the reversible changes in mechanical properties is the strong physical interactions between micelles formed by PEPE being covalently linked to gelatin. Above the transition temperature, the local properties were evaluated by AFM indentation of pore walls in which an increase in elastic modulus (E) at higher temperature (37 °C) was observed. The water uptake of these thermosensitive architectured porous hydrogels was also influenced by PEPE and temperature (25 °C and 37 °C), showing lower water up take at higher temperature and vice versa. In addition, due to the lower water uptake at high temperature, the rate of hydrolytic degradation of these systems was found to be decreased when compared to pure gelatin architectured porous hydrogels. Such temperature sensitive architectured porous hydrogels could be important for e.g. stem cell culturing, cell differentiation and guided cell migration, etc. Altogether, it was possible to demonstrate that the crosslinking of micelles by a macromolecular crosslinker increased the shear moduli, viscosity, and stability towards dissolution of CMC-based gels. This effect could be likewise be realized by covalent or non-covalent mechanisms such as, micelle interactions, physical interactions of gelatin chains and physical interactions between gelatin chains and micelles. Moreover, the covalent grafting of PEPE will create additional net-points which also influence the mechanical properties of thermosensitive architectured porous hydrogels. Overall, the physical and chemical interactions and reversible physical interactions in such thermosensitive architectured porous hydrogels gave a control over the mechanical properties of such complex system. The hydrogels showing change of mechanical properties without a sol-gel transition or volume change are especially interesting for further study with cell proliferation and differentiation.}, language = {en} } @phdthesis{Garnweitner2005, author = {Garnweitner, Georg}, title = {Nichtw{\"a}ssrige Synthese und Bildungsmechanismus von {\"U}bergangsmetalloxid-Nanopartikeln = Nonaqueous synthesis of transition-metal oxide nanoparticles and their formation mechanism}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5892}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In this work, the nonaqueous synthesis of binary and ternary metal oxide nanoparticles is investigated for a number of technologically important materials. A strong focus was put on studying the reaction mechanisms leading to particle formation upon solvothermal treatment of the precursors, as an understanding of the formation processes is expected to be crucial for a better control of the systems, offering the potential to tailor particle size and morphology. The synthesis of BaTiO3 was achieved by solvothermal reaction of metallic barium and titanium isopropoxide in organic solvents. Phase-pure, highly crystalline particles about 6 nm in size resulted in benzyl alcohol, whereas larger particles could be obtained in ketones such as acetone or acetophenone. In benzyl alcohol, a novel mechanism was found to lead to BaTiO3, involving a C-C coupling step between the isopropoxide ligand and the benzylic carbon of the solvent. The resulting coupling product, 4-phenyl-2-butanol, is found in almost stoichiometric yield. The particle formation in ketones proceeds via a Ti-mediated aldol condensation of the solvent, involving formal elimination of water which induces formation of the oxide. These processes also occurred when reacting solely the titanium alkoxide with ketones or aldehydes, leading to highly crystalline anatase nanoparticles for all tested solvents. In ketones, also the synthesis of nanopowders of lead zirconate titanate (PZT) was achieved, which were initially amorphous but could be crystallized by calcination at moderate temperatures. Additionally, PZT films were prepared by simply casting a suspension of the powder onto Si substrates followed by calcination.Solvothermal synthesis however is not restricted to alkoxides as precursors but is also achieved from metal acetylacetonates. The use of benzylamine as solvent proved particularly versatile, making possible the synthesis of nanocrystalline In2O3, Ga2O3, ZnO and iron oxide from the respective acetylacetonates. During the synthesis, the acetylacetonate ligand undergoes a solvolysis under C-C cleavage, resulting in metal-bound enolate ligands which, in analogy to the synthesis in ketones, induce ketimine and aldol condensation reactions. In the last section of this work, surface functionalization of anatase nanoparticles is explored. The particles were first capped with various organic ligands via a facile in situ route, which resulted in altered properties such as enhanced dispersibility in various solvents. In a second step, short functional oligopeptide segments were attached to the particles by means of a catechol linker to achieve advanced self-assembly properties.}, subject = {Nanopartikel}, language = {en} }