@article{StrauchNeumannKellingetal.2015, author = {Strauch, Peter and Neumann, Mike and Kelling, Alexandra and Schilde, Uwe}, title = {Bis(1,2-dithiosquarato)nickelates(II): Synthesis, Structure, EPR and Thermal Behavior}, series = {Acta chimica Slovenica}, volume = {62}, journal = {Acta chimica Slovenica}, number = {2}, publisher = {Drustvo}, address = {Ljubljana}, issn = {1318-0207}, pages = {288 -- 296}, year = {2015}, abstract = {1,2-Dithiosquaratonickelates are available by direct synthesis from metal salts with dipotassium-1,2-dithiosquarate and the appropriate counter cations. The synthesis and characterization, including mass spectrometry, of a series 1,2-dithiosquaratonickelates(II), [Ni(dtsq)(2)](2-), with several "onium" cations is reported and the X-ray structures of two diamagnetic complexes, (HexPh(3)P)(2)[Ni(dtsq)(2)] and (BuPh3P)(2)[Ni(dtsq)(2)] with sterically demanding counter ions are presented. The diamagnetic nickel complexes have been doped as host lattices with traces of Cu(II) to measure EPR for additional structural information. The thermal behavior of this series is studied by thermogravimetry and differential thermal analysis (TG/DTA). The thermolysis in air as well as under nitrogen atmosphere of these complexes results in nickel oxide nano-particles in all cases, which are characterized by X-ray powder diffraction.}, language = {en} } @article{Kroener2015, author = {Kroener, Dominik}, title = {Laser-driven electron dynamics for circular dichroism in mass spectrometry: from onephoton excitations to multiphoton ionization}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp02193f}, pages = {19643 -- 19655}, year = {2015}, abstract = {The distinction of enantiomers is a key aspect of chemical analysis. In mass spectrometry the distinction of enantiomers has been achieved by ionizing the sample with circularly polarized laser pulses and comparing the ion yields for light of opposite handedness. While resonant excitation conditions are expected to be most efficient, they are not required for the detection of a circular dichroism (CD) in the ion yield. However, the prediction of the size and sign of the circular dichroism becomes challenging if non-resonant multiphoton excitations are used to ionize the sample. Employing femtosecond laser pulses to drive electron wavepacket dynamics based on ab initio calculations, we attempt to reveal underlying mechanisms that determine the CD under non-resonant excitation conditions. Simulations were done for (R)-1,2-propylene oxide, using time-dependent configuration interaction singles with perturbative doubles (TD-CIS(D)) and the aug-cc-pVTZ basis set. Interactions between the electric field and the electric dipole and quadrupole as well as between the magnetic field and the magnetic dipole were explicitly accounted for. The ion yield was determined by treating states above the ionization potential as either stationary or non-stationary with energy-dependent lifetimes based on an approved heuristic approach. The observed population dynamics do not allow for a simple interpretation, because of highly non-linear interactions. Still, the various transition pathways are governed by resonant enantiospecific n-photon excitation, with preferably high transition dipole moments, which eventually dominate the CD in the ionized population.}, language = {en} } @article{NiedlBeta2015, author = {Niedl, Robert Raimund and Beta, Carsten}, title = {Hydrogel-driven paper-based microfluidics}, series = {LAB on a chip : miniaturisation for chemistry and biology}, volume = {11}, journal = {LAB on a chip : miniaturisation for chemistry and biology}, number = {15}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1473-0197}, doi = {10.1039/c5lc00276a}, pages = {2452 -- 2459}, year = {2015}, abstract = {Paper-based microfluidics provide an inexpensive, easy to use technology for point-of-care diagnostics in developing countries. Here, we combine paper-based microfluidic devices with responsive hydrogels to add an entire new class of functions to these versatile low-cost fluidic systems. The hydrogels serve as fluid reservoirs. In response to an external stimulus, e.g. an increase in temperature, the hydrogels collapse and release fluid into the structured paper substrate. In this way, chemicals that are either stored on the paper substrate or inside the hydrogel pads can be dissolved, premixed, and brought to reaction to fulfill specific analytic tasks. We demonstrate that multi-step sequences of chemical reactions can be implemented in a paper-based system and operated without the need for external precision pumps. We exemplify this technology by integrating an antibody-based E. coli test on a small and easy to use paper device.}, language = {en} } @article{KathreinBaiCurrivanIncorviaetal.2015, author = {Kathrein, Christine C. and Bai, Wubin and Currivan-Incorvia, Jean Anne and Liontos, George and Ntetsikas, Konstantinos and Avgeropoulos, Apostolos and B{\"o}ker, Alexander and Tsarkova, Larisa and Ross, Caroline A.}, title = {Combining Graphoepitaxy and Electric Fields toward Uniaxial Alignment of Solvent-Annealed Polystyrene-b-Poly(dimethylsiloxane) Block Copolymers}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {27}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.5b03354}, pages = {6890 -- 6898}, year = {2015}, abstract = {We report a combined directing effect of the simultaneously applied graphoepitaxy and electric field on the self-assembly of cylinder forming polystyrene-b-poly(dimethylsiloxane) block copolymer in thin films. A correlation length of up to 20 mu m of uniaxial ordered striped patterns is an order of magnitude greater than that produced by either graphoepitaxy or electric field alignment alone and is achieved at reduced annealing times. The angle between the electric field direction and the topographic guides as well as the dimensions of the trenches affected both the quality of the ordering and the direction of the orientation of cylindrical domains: parallel or perpendicular to the topographic features. We quantified the interplay between the electric field and the geometry of the topographic structures by constructing the phase diagram of microdomain orientation. This combined approach allows the fabrication of highly ordered block copolymer structures using macroscopically prepatterned photolithographic substrates.}, language = {en} } @article{LiedelLewinTsarkovaetal.2015, author = {Liedel, Clemens and Lewin, Christian and Tsarkova, Larisa and B{\"o}ker, Alexander}, title = {Reversible Switching of Block Copolymer Nanopatterns by Orthogonal Electric Fields}, series = {Small}, volume = {11}, journal = {Small}, number = {45}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.201502259}, pages = {6058 -- 6064}, year = {2015}, abstract = {It is demonstrated that the orientation of striped patterns can be reversibly switched between two perpendicular in-plane orientations upon exposure to electric fields. The results on thin films of symmetric polystyrene-block-poly(2-vinyl pyridine) polymer in the intermediate segregation regime disclose two types of reorientation mechanisms from perpendicular to parallel relative to the electric field orientation. Domains orient via grain rotation and via formation of defects such as stretched undulations and temporal phase transitions. The contribution of additional fields to the structural evolution is also addressed to elucidate the generality of the observed phenomena. In particular solvent effects are considered. This study reveals the stabilization of the meta-stable in-plane oriented lamella due to sequential swelling and quenching of the film. Further, the reorientation behavior of lamella domains blended with selective nanoparticles is addressed, which affect the interfacial tensions of the blocks and hence introduce another internal field to the studied system. Switching the orientation of aligned block copolymer patterns between two orthogonal directions may open new applications of nanomaterials as switchable electric nanowires or optical gratings.}, language = {en} } @article{PesterSchmidtRuppeletal.2015, author = {Pester, Christian W. and Schmidt, Kristin and Ruppel, Markus and Schoberth, Heiko G. and B{\"o}ker, Alexander}, title = {Electric-Field-Induced Order-Order Transition from Hexagonally Perforated Lamellae to Lamellae}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b01336}, pages = {6206 -- 6213}, year = {2015}, abstract = {Block copolymers form a variety of microphase morphologies due to their ability to phase separate. The hexagonally perforated lamellar (HPL) morphology represents an unusually long-lived, nonequilibrium transient structure between lamellar and cylindrical phases. We present a detailed study of a concentrated, HPL-forming poly(styrene-b-isoprene) diblock copolymer solution in toluene in the presence of an electric field. We will show that this phase is readily aligned by a moderate electric field and provide experimental evidence for an electric-field-induced order order transition toward the lamellar phase under sufficiently strong fields. This process is shown to be fully reversible as lamellar perforations reconnect immediately upon secession of the external stimulus, recovering highly aligned perforated lamellae.}, language = {en} } @article{VukicevicNeffeLuetzowetal.2015, author = {Vukicevic, Radovan and Neffe, Axel T. and Luetzow, Karola and Pierce, Benjamin F. and Lendlein, Andreas}, title = {Conditional Ultrasound Sensitivity of Poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] Microgels for Controlled Lipase Release}, series = {Macromolecular rapid communications}, volume = {36}, journal = {Macromolecular rapid communications}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201500311}, pages = {1891 -- 1896}, year = {2015}, abstract = {Triggering the release of cargo from a polymer network by ultrasonication as an external, non-invasive stimulus can be an interesting concept for on-demand release. Here, it is shown that, in pH-and thermosensitive microgels, the ultrasound sensitivity of the polymer network depends on the external conditions. Crosslinked poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] microgels showed a volume phase transition temperature (VPTT) of 25-50 degrees C, which increases with decreasing pH. Above the VPTT the polymer chains are collapsed, while below VPTT they are extended. Only in the case of maximum observed swelling, where the polymer chains are expanded, the microgels are mechanically fragmented through ultrasonication. In contrast, when the polymer chains are partially collapsed it is not possible to manipulate the microgels by ultrasound. Additionally, the ultrasound-induced on-demand release of wheat germ lipase from the microgels could be demonstrated successfully. The principle of conditional ultrasound sensitivity is likely to be general and can be used for selection of matrix-cargo combinations.}, language = {en} } @article{FedericoPiercePilusoetal.2015, author = {Federico, Stefania and Pierce, Benjamin F. and Piluso, Susanna and Wischke, Christian and Lendlein, Andreas and Neffe, Axel T.}, title = {Design of Decorin-Based Peptides That Bind to CollagenI and their Potential as Adhesion Moieties in Biomaterials}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {37}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201505227}, pages = {10980 -- 10984}, year = {2015}, abstract = {Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagenI, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine.}, language = {en} } @article{NeffeLendlein2015, author = {Neffe, Axel T. and Lendlein, Andreas}, title = {Going Beyond Compromises in Multifunctionality of Biomaterials}, series = {Advanced healthcare materials}, volume = {4}, journal = {Advanced healthcare materials}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2192-2640}, doi = {10.1002/adhm.201400724}, pages = {642 -- 645}, year = {2015}, language = {en} } @article{MondalBehrensMatthesetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Matthes, Philipp R. and Sch{\"o}nfeld, Fabian and Nitsch, J{\"o}rn and Steffen, Andreas and Primus, Philipp-Alexander and Kumke, Michael Uwe and M{\"u}ller-Buschbaum, Klaus and Holdt, Hans-J{\"u}rgen}, title = {White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {18}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7534}, doi = {10.1039/C4TC02919D}, pages = {4623 -- 4631}, year = {2015}, abstract = {Co-doping of the MOF 3∞[Zn(2-methylimidazolate-4-amide-5-imidate)] (IFP-1 = Imidazolate Framework Potsdam-1) with luminescent Eu3+ and Tb3+ ions presents an approach to utilize the porosity of the MOF for the intercalation of luminescence centers and for tuning of the chromaticity to the emission of white light of the quality of a three color emitter. Organic based fluorescence processes of the MOF backbone as well as metal based luminescence of the dopants are combined to one homogenous single source emitter while retaining the MOF's porosity. The lanthanide ions Eu3+ and Tb3+ were doped in situ into IFP-1 upon formation of the MOF by intercalation into the micropores of the growing framework without a structure directing effect. Furthermore, the color point is temperature sensitive, so that a cold white light with a higher blue content is observed at 77 K and a warmer white light at room temperature (RT) due to the reduction of the organic emission at higher temperatures. The study further illustrates the dependence of the amount of luminescent ions on porosity and sorption properties of the MOF and proves the intercalation of luminescence centers into the pore system by low-temperature site selective photoluminescence spectroscopy, SEM and EDX. It also covers an investigation of the border of homogenous uptake within the MOF pores and the formation of secondary phases of lanthanide formates on the surface of the MOF. Crossing the border from a homogenous co-doping to a two-phase composite system can be beneficially used to adjust the character and warmth of the white light. This study also describes two-color emitters of the formula Ln@IFP-1a-d (Ln: Eu, Tb) by doping with just one lanthanide Eu3+ or Tb3+.}, language = {en} }