@article{NingYuMeietal.2022, author = {Ning, Jiaoyi and Yu, Hongtao and Mei, Shilin and Sch{\"u}tze, Yannik and Risse, Sebastian and Kardjilov, Nikolay and Hilger, Andr{\´e} and Manke, Ingo and Bande, Annika and Ruiz, Victor G. and Dzubiella, Joachim and Meng, Hong and Lu, Yan}, title = {Constructing binder- and carbon additive-free organosulfur cathodes based on conducting thiol-polymers through electropolymerization for lithium-sulfur batteries}, series = {ChemSusChem}, volume = {15}, journal = {ChemSusChem}, number = {14}, publisher = {Wiley}, address = {Weinheim}, issn = {1864-5631}, doi = {10.1002/cssc.202200434}, pages = {10}, year = {2022}, abstract = {Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries. The S/PTBT cathode exhibited a reversible capacity of around 870 mAh g(-1) at 0.1 C and improved cycling performance compared to the physically mixed cathode (namely S\&PTBT). This multifunction cathode eliminated the influence of the additives (carbon/binder), making it suitable to be applied as a model electrode for operando analysis. Operando X-ray imaging revealed the remarkable effect in the suppression of polysulfides shuttle via introducing covalent bonds, paving the way for the study of the intrinsic mechanisms in Li-S batteries.}, language = {en} } @article{MeiSiebertXuetal.2022, author = {Mei, Shilin and Siebert, Andreas and Xu, Yaolin and Quan, Ting and Garcia-Diez, Raul and B{\"a}r, Marcus and H{\"a}rtel, Paul and Abendroth, Thomas and D{\"o}rfler, Susanne and Kaskel, Stefan and Lu, Yan}, title = {Large-Scale Synthesis of Nanostructured Carbon-Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium-Sulfur Pouch Cells}, series = {Batteries \& supercaps}, volume = {5}, journal = {Batteries \& supercaps}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2566-6223}, doi = {10.1002/batt.202100398}, pages = {11}, year = {2022}, abstract = {Applications of advanced cathode materials with well-designed chemical components and/or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium-sulfur (Li-S) batteries under practical working conditions, one long-term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles (Ti4O7) using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro- \& mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C-Ti4O7 based pouch cell endows a high discharge capacity of 1003 mAhg(-1) at 0.05 C, a high-capacity retention of 83.7\% after 100 cycles at 0.1 C, and a high Coulombic efficiency of 97.5\% at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab- to large-scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li-S pouch cells.}, language = {en} } @article{MeiJaftaLauermannetal.2017, author = {Mei, Shilin and Jafta, Charl J. and Lauermann, Iver and Ran, Qidi and Kaergell, Martin and Ballauff, Matthias and Lu, Yan}, title = {Porous Ti4O7 Particles with Interconnected-Pore Structure as a High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries}, series = {Advanced functional materials}, volume = {27}, journal = {Advanced functional materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201701176}, pages = {10}, year = {2017}, abstract = {Multifunctional Ti4O7 particles with interconnected-pore structure are designed and synthesized using porous poly(styrene-b-2-vinylpyridine) particles as a template. The particles can work efficiently as a sulfur-host material for lithium-sulfur batteries. Specifically, the well-defined porous Ti4O7 particles exhibit interconnected pores in the interior and have a high-surface area of 592 m(2) g(-1); this shows the advantage of mesopores for encapsulating of sulfur and provides a polar surface for chemical binding with polysulfides to suppress their dissolution. Moreover, in order to improve the conductivity of the electrode, a thin layer of carbon is coated on the Ti4O7 surface without destroying its porous structure. The porous Ti4O7 and carbon-coated Ti4O7 particles show significantly improved electrochemical performances as cathode materials for Li-S batteries as compared with those of TiO2 particles.}, language = {en} }